UG-25+ Actuator

Installation and Operation Manual
General Precautions

Read this entire manual and all other publications pertaining to the work to be performed before installing, operating, or servicing this equipment. Practice all plant and safety instructions and precautions. Failure to follow instructions can cause personal injury and/or property damage.

Revisions

This publication may have been revised or updated since this copy was produced. To verify that you have the latest revision, check manual 26455, Customer Publication Cross Reference and Revision Status & Distribution Restrictions, on the publications page of the Woodward website: www.woodward.com/publications

The latest version of most publications is available on the publications page. If your publication is not there, please contact your customer service representative to get the latest copy.

Proper Use

Any unauthorized modifications to or use of this equipment outside its specified mechanical, electrical, or other operating limits may cause personal injury and/or property damage, including damage to the equipment. Any such unauthorized modifications: (i) constitute "misuse" and/or "negligence" within the meaning of the product warranty thereby excluding warranty coverage for any resulting damage, and (ii) invalidate product certifications or listings.

Translated Publications

If the cover of this publication states "Translation of the Original Instructions" please note:

The original source of this publication may have been updated since this translation was made. Be sure to check manual 26455, Customer Publication Cross Reference and Revision Status & Distribution Restrictions, to verify whether this translation is up to date. Out-of-date translations are marked with ▲. Always compare with the original for technical specifications and for proper and safe installation and operation procedures.

Revisions— A bold, black line alongside the text identifies changes in this publication since the last revision.

Woodward reserves the right to update any portion of this publication at any time. Information provided by Woodward is believed to be correct and reliable. However, no responsibility is assumed by Woodward unless otherwise expressly undertaken.

Manual 26580
Copyright © Woodward, Inc. 2011 - 2018
All Rights Reserved
Contents

WARNINGS AND NOTICES ... 3
ELECTROSTATIC DISCHARGE AWARENESS .. 4
REGULATORY COMPLIANCE ... 5

CHAPTER 1. GENERAL INFORMATION ... 7
How to Use This Manual .. 7
General Description .. 7
Operational Features ... 7
Inputs / Outputs ... 7
Available Drive Shafts .. 7
Available Terminal Shafts .. 7
UG Governor Similarities ... 7
Hydraulic Pump .. 8
References .. 8
Serviceability .. 8

CHAPTER 2. MECHANICAL INSTALLATION .. 12
Introduction .. 12
Initial Operation ... 12
Unpacking ... 13
Drive Shaft Rotation ... 15
Drive Connection ... 17
Oil Supply .. 19
Heat Exchanger .. 22
Recommended Service Intervals ... 22

CHAPTER 3. ELECTRICAL INSTALLATION .. 23
Introduction ... 23
Unit Grounding .. 23
Shielded Wiring ... 24
Electrical Connections .. 24
High Potential Testing ... 35
Insulation Resistance Testing ... 35

CHAPTER 4. DESCRIPTION OF OPERATION ... 37
General ... 37
Principal of Operation ... 38
Fault Detection and Annunciation .. 40
Shutdown Details .. 40

CHAPTER 5. TROUBLESHOOTING ... 42
Introduction .. 42
General System Troubleshooting Guide .. 42

CHAPTER 6. PRODUCT SUPPORT AND SERVICE OPTIONS .. 46
Product Support Options .. 46
Product Service Options ... 46
Returning Equipment for Repair .. 47
Replacement Parts .. 48
Engineering Services ... 48
Contacting Woodward’s Support Organization .. 48
Technical Assistance ... 49

APPENDIX A. ACRONYMS / ABBREVIATIONS .. 50
APPENDIX B. UG-25+ GOVERNOR SPECIFICATIONS .. 51
Illustrations and Tables

Figure 1-1a. UG-25+ Actuator Outline Drawing................................. 9
Figure 1-1b. UG-25+ Actuator Outline Drawing................................. 10
Figure 1-2. UG-25+ Drive Shaft Configurations................................. 11
Figure 2-1. UG-25+ Actuator Overview... 14
Figure 2-2. Proper Drive Shaft Rotation... 15
Figure 2-3. Terminal Shaft Travel.. 18
Figure 2-4. Linear Linkage... 19
Figure 2-5. Non-linear Linkage.. 19
Figure 2-6. Oil Chart... 20
Figure 3-1. Location of Ground Strap... 23
Figure 3-2. Access Cover Instruction Label....................................... 25
Figure 3-4. Correct and Incorrect Dome Nut Installation................. 26
Figure 3-5. UG-25+ Actuator Application Wiring............................. 27
Figure 3-6a. Connector Wiring... 28
Figure 3-6b. Connector Wiring... 29
Figure 3-6c. Connector Wiring... 30
Figure 3-6d. UG-25+ Actuator Terminals... 31
Figure 3-4. Internal Block Diagram.. 33
Figure 3-5. Correct and Incorrect Wiring to Power Supply................. 34
Figure 3-6. Relay Driver Output.. 34
Figure 4-1. UG-25+ Actuator Front Panel....................................... 37
Figure 4-2. UG-25+ Actuator Functional Overview......................... 39

Table 3-1. Customer I/O Terminal Position Assignment 32
Table 5-1. Engine/Generator Troubleshooting................................. 44
Table B-1. Power Input (1 and 2)... 53
Table B-2. Status (Unit Health) Output.. 53
Table B-3. Position Command.. 53
Warnings and Notices

Important Definitions
This is the safety alert symbol used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

- **DANGER** - Indicates a hazardous situation, which if not avoided, will result in death or serious injury.
- **WARNING** - Indicates a hazardous situation, which if not avoided, could result in death or serious injury.
- **CAUTION** - Indicates a hazardous situation, which if not avoided, could result in minor or moderate injury.
- **NOTICE** - Indicates a hazard that could result in property damage only (including damage to the control).
- **IMPORTANT** - Designates an operating tip or maintenance suggestion.

Override / Overtemperature / Overpressure

The engine, turbine, or other type of prime mover should be equipped with an overspeed shutdown device to protect against runaway or damage to the prime mover with possible personal injury, loss of life, or property damage. The overspeed shutdown device must be totally independent of the prime mover control system. An overtemperature or overpressure shutdown device may also be needed for safety, as appropriate.

Personal Protective Equipment

The products described in this publication may present risks that could lead to personal injury, loss of life, or property damage. Always wear the appropriate personal protective equipment (PPE) for the job at hand. Equipment that should be considered includes but is not limited to:

- **Eye Protection**
- **Hearing Protection**
- **Hard Hat**
- **Gloves**
- **Safety Boots**
- **Respirator**

Always read the proper Material Safety Data Sheet (MSDS) for any working fluid(s) and comply with recommended safety equipment.

Start-up

Be prepared to make an emergency shutdown when starting the engine, turbine, or other type of prime mover, to protect against runaway or overspeed with possible personal injury, loss of life, or property damage.

Automotive Applications

On- and off-highway Mobile Applications: Unless Woodward’s control functions as the supervisory control, customer should install a system totally independent of the prime mover control system that monitors for supervisory control of engine (and takes appropriate action if supervisory control is lost) to protect against loss of engine control with possible personal injury, loss of life, or property damage.
To prevent damage to a control system that uses an alternator or battery-charging device, make sure the charging device is turned off before disconnecting the battery from the system.

Electrostatic Discharge Awareness

Electronic controls contain static-sensitive parts. Observe the following precautions to prevent damage to these parts:

- Discharge body static before handling the control (with power to the control turned off, contact a grounded surface and maintain contact while handling the control).
- Avoid all plastic, vinyl, and Styrofoam (except antistatic versions) around printed circuit boards.
- Do not touch the components or conductors on a printed circuit board with your hands or with conductive devices.

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.

Follow these precautions when working with or near the control.

1. Avoid the build-up of static electricity on your body by not wearing clothing made of synthetic materials. Wear cotton or cotton-blend materials as much as possible because these do not store static electric charges as much as synthetics.

2. Do not remove the printed circuit board (PCB) from the control cabinet unless absolutely necessary. If you must remove the PCB from the control cabinet, follow these precautions:
 - Do not touch any part of the PCB except the edges.
 - Do not touch the electrical conductors, the connectors, or the components with conductive devices or with your hands.
 - When replacing a PCB, keep the new PCB in the plastic antistatic protective bag it comes in until you are ready to install it. Immediately after removing the old PCB from the control cabinet, place it in the antistatic protective bag.
Regulatory Compliance

European Compliance for CE Marking:
These listings are limited only to those units bearing the CE Marking.

Other European Compliance
Compliance with the following European Directives or standards does not qualify this product for application of the CE Marking:

Pressure Equipment Directive: Compliant as “SEP” per Article 4.3 to Pressure Equipment Directive 2014/68/EU on the harmonisation of the laws of the Member States relating to the making available on the market of pressure equipment.

Marine Compliance:
Type Approval with the following Marine Classification Societies:

ABS: 2007 Steel Vessel Rules 1-1-4/7.7.4-9-7/13.1

BV: BV Rules for the Classification of Steel Ships

CCS: Part 3, Chapter 9; Part 7, Chapter 2 of CCS "Rules for Classification of Sea-going Steel Ships" (2009) and its 2010/2011 Amendments

DNV GL: Det Norske Veritas Rules for Classification of Ships, High Speed & Light Craft and Det Norske Veritas Offshore Standards

KRS: Korean Register of Shipping Pt. 6 Ch. 2 Art. 301 of the Rules for Classification, Steel Ships

LR: Lloyds Register Environmental Categories ENV1, ENV2, ENV3, and ENV4 as defined in LR Test Specification No.1: 2002

NK: Nippon Kaiji Kyokai requirements Chapter 1, Part 7 of Guidance for the approval and type approval of materials and equipment for marine use and relevant Society’s Rules

Special Conditions for Safe Use:
Field wiring must be suitable for at least 55 °C.

Compliance with the Machinery Directive 2006/42/EC noise measurement and mitigation requirements is the responsibility of the manufacturer of the machinery into which this product is incorporated.
Safety Symbols

- Direct Current
- Alternating Current
- Both Alternating and Direct Current
- Caution, risk of electrical shock
- Caution, refer to accompanying documents
- Protective conductor terminal
- Frame or chassis terminal
Chapter 1.
General Information

How to Use This Manual

The following summarizes how to install a UG-25+ actuator into a new or existing system:
• Unpack and inspect the hardware.
• Mount and wire the hardware following the procedures and recommendations in Chapters 2–3.
• Specifications and Troubleshooting information are provided in the Appendixes.

General Description

The Woodward UG-25+ actuator is a microprocessor controlled mechanical hydraulic actuator used in conjunction with an external governor for controlling diesel, gas, or dual fuel engines, or steam turbines.

The UG-25+ actuator provides a fast-acting and high-work-output actuator, without the need for any auxiliary devices such as a start booster or oil cooler.

The UG-25+ actuator uses an internal, self-contained oil system operating at 1034 kPa (150 psi) internal pressure with an internal oil pump driven from the actuator's drive shaft. Oil pressure is maintained by a relief valve system with a drain to an internal oil sump.

Operational Features

The UG-25+ actuator terminal shaft assumes a position which is directly proportional to the (4 to 20) mA analog input signal.

Inputs / Outputs

The following inputs and outputs are available:
• Input Power (single or dual)
• Unit Healthy Status discrete output
• Analog (4 to 20) mA input controlling terminal shaft position

Available Drive Shafts

The following drive shafts are available:

Standard—
0.625–36 serrated drive shaft
0.625 keyed drive shaft with 0.625-18 thread

Available (for special applications at additional cost)—
Extended 0.625 keyed drive shaft

Available Terminal Shafts

The following output terminal drive shafts are available:

Standard—
0.625–36 serrated terminal shaft (25 ft-lb version only)
0.750-48 serrated terminal shaft (31 ft-lb version only)
UG Governor Similarities

The base is designed to fit any engine drive designed for a UG8 governor. The terminal shaft location relative to the mounting base is similar to a UG8 governor.

Hydraulic Pump

The UG-25+ actuator is equipped with a Gerotor fixed displacement pump (similar to the 3161 governor type) with a relief valve. The pump/relief valve uses oil from its self-contained sump to provide 1035 kPa (150 psi) internal operating pressure.

Two displacements are offered to cover the speed range up to 1700 grpm. The large displacement pump (22.22 mm / 0.875 inch thick) is intended to be used with actuator drive speeds from 350 to 1200 rpm. Running the large displacement pump continuously above 1200 grpm will result in excessive oil temperatures. The small displacement pump (15.88 mm / 0.625 inch thick) is designed to be used with drive speeds between 500 and 1700 rpm maximum continuous operation.

The direction of rotation is selected by pump housing alignment. The pump operates in the selected direction only. The drive uses a maximum of 335 W (0.45 hp).

References

The following publications provide additional information about installation, operation, and storage of Woodward products. All are available on the Woodward website (www.woodward.com).

<table>
<thead>
<tr>
<th>Publication</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>25071</td>
<td>Oils for Hydraulic Controls</td>
</tr>
<tr>
<td>25075</td>
<td>Commercial Preservation Packaging for Storage of Mechanical-Hydraulic Controls</td>
</tr>
<tr>
<td>50516</td>
<td>Governor Linkage for Butterfly Control Valve</td>
</tr>
<tr>
<td>03386</td>
<td>UG-25+ Actuator Product Specification</td>
</tr>
<tr>
<td>36684</td>
<td>Booster Servomotor</td>
</tr>
</tbody>
</table>

Contact your nearest Woodward Distributor or Authorized Independent Service Facility about repairs.

Serviceability

The UG-25+ actuator has no field-replaceable parts.

WARNING

The UG-25+ actuator is not equipped with an overspeed trip function. The engine, turbine, or other type of prime mover should be equipped with an overspeed shutdown device to protect against runaway or damage to the prime mover with possible personal injury, loss of life, or property damage.

The overspeed shutdown device must be totally independent of the prime mover control system. An overtemperature or overpressure shutdown device may also be needed for safety, as appropriate.
Figure 1-1a. UG-25+ Actuator Outline Drawing
Figure 1-1b. UG-25+ Actuator Outline Drawing

Terminal Shaft Configuration Table

<table>
<thead>
<tr>
<th>Output Rating</th>
<th>DIN 'A'</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 LB-FT</td>
<td>3.372-4.282</td>
</tr>
<tr>
<td></td>
<td>[0.86-1.0872]</td>
</tr>
<tr>
<td>31 LB-FT</td>
<td>4.235-4.495</td>
</tr>
<tr>
<td></td>
<td>[1.0757-1.1391]</td>
</tr>
</tbody>
</table>

265-053B
(9939-3115sh1)
2012-1-11

2/3 STROKE RECOMMENDED FOR NO LOAD TO FULL LOAD, SEE MANUAL.
Figure 1-2. UG-25+ Drive Shaft Configurations

DRIVE SHAFT O.D. = 0.6240-0.6245
[15.85-15.86]
WITH 0.188 (4.78) SQUARE KEY
(0.062, 26.97) LONG

AFTER DRIVE GEAR INSTALLATION,
TORQUE TO 34-41 Nm (25-38 Lb-FT)

WOODWARD 3-09-0270 OR 3-09-0290

BOTTOM OF PUMP BASE
Chapter 2.
Mechanical Installation

Introduction

This chapter describes receiving, storage, and installation requirements for the UG-25+ actuator.

WARNING Due to typical noise levels in turbine or engine environments, hearing protection should be worn when working on or around the UG-25+ actuator.

WARNING The surface of this product can become hot enough or cold enough to be a hazard. Use protective gear for product handling in these circumstances. Temperature ratings are included in the specification section of this manual.

WARNING Use of an independent device for positive shutdown, such as a fuel shut-off valve, is highly recommended. Failure to comply with this recommendation can cause personal injury and/or property damage.

WARNING Use of an external spring to return to minimum fuel is highly recommended. Failure to comply with this recommendation can cause personal injury and/or property damage.

WARNING Use of a predicted minimum fuel shutdown procedure is highly recommended. Failure to comply with this recommendation can cause personal injury and/or property damage.

NOTICE Use care while handling and installing the UG-25+ actuator. Be particularly careful to avoid striking the drive shaft, terminal shaft, or the electrical connector. Abuse can damage seals, internal parts, and factory adjustments. Do not set the actuator on its drive shaft.

WARNING External fire protection is not provided in the scope of this product. It is the responsibility of the user to satisfy any applicable requirements for their system.

Initial Operation

WARNING Before initial operation of the engine equipped with a UG-25+ actuator, read all of Chapters 2 and 3, Installation Procedures and Electrical Installation. Make sure that all installation steps have been correctly accomplished and all linkages are secured and properly attached. Carefully review the direction of rotation for the actuator oil pump.
Follow this procedure when putting a new or repaired UG-25+ actuator into service.

1. Check that the actuator is full of the proper type and grade of clean oil (refer to the Oil Supply section in this manual).

2. Properly adjust the linkage (refer to the Control Linkage section in this manual).

![WARNING]

To prevent possible serious injury or loss of life, or damage to the engine, be sure to allow sufficient overtravel at each end of the terminal shaft so the actuator can shut down the engine, and give maximum fuel when required. Misadjusted linkage could prevent the actuator from shutting down the engine.

3. Adjust the external control system to give a low Position Command signal to the UG-25+ actuator to achieve a low speed setting to give low engine speed at initial start-up.

![WARNING]

Be prepared to make an emergency shutdown when starting the engine, turbine, or other type of prime mover, to protect against runaway or overspeed with possible personal injury, loss of life, or property damage.

4. Follow the engine manufacturer's instructions, and start the engine.

5. Adjust the selected speed setting of the control system to bring the engine to rated speed.

6. Obtain system stability by adjusting the control system's dynamics. (If less than the recommended actuator output stroke is used, it may cause for less than optimum engine stability or response.)

All operating adjustments of the UG-25+ actuator are made during factory calibration. Additional adjustment should not be needed.

Unpacking

Be careful when unpacking the unit. Check the unit for signs of damage, such as bent or dented panels, scratches, and loose or broken parts. Notify the shipper and Woodward if damage is found.

Receiving

After factory testing and calibration, the UG-25+ actuator is drained of oil. This leaves a light film of oil on internal parts to prevent rust. External parts are painted or coated with a spray lubricant/rust inhibitor.

No internal cleaning or flushing is necessary before installation and operation. The little oil left in the actuator is clean, multi-viscosity engine oil, which will not contaminate the oil selected to operate the actuator.

Fill the actuator with 2.1 liters (2.2 quarts) of oil selected to match the expected operating conditions. (If the actuator is a direct replacement for a UG governor, you may use the same grade and weight of oil that was being used in the governor.) Use only new, clean oil in the actuator. Do not allow dirt or contamination to enter the actuator while filling with operating oil. Do not use oil drained from the UG governor.
Figure 2-1. UG-25+ Actuator Overview
Storage

The UG-25+ actuator may be stored for short periods of time (less than a year) as received from the factory. For long-term storage (more than a year), storage in an environment with large temperature changes, humid or corrosive atmosphere, etc., or if the actuator is installed on the engine for storage, fill the actuator with oil and follow preservation packaging instructions in Woodward manual 25075, Commercial Preservation Packaging for Storage of Mechanical-Hydraulic Controls.

Drive Shaft Rotation

The actuator drive-shaft rotation is one direction only. Rotation, as viewed from the top of the actuator, must be the same as that of the engine drive when looking down on the mounting pad.

If the actuator oil pump is rotated in the wrong direction, no oil pressure will be generated in the actuator.

Be sure engine mounting-pad drive and actuator-drive rotation are the same. Incorrect drive rotation will cause the actuator to become inoperative, and may cause actuator damage.

Mounting Location

Locate the UG-25+ actuator at a distance from sources of extreme radiant heat, such as exhaust manifolds, turbochargers, or live steam lines. The ambient operating temperature range of the control is (0 to 55) °C / (32 to 131) °F (maximum allowable actuator case temperature is 100 °C / 212 °F max). In spark-ignited applications, make sure the UG-25+ actuator is located away from the ignition coil, and that harness wires are not routed next to the spark plug wires.
As shown in the specifications, the UG-25+ actuator has been designed for and validated to a given accelerated life vibration test level at the mounting surface of the actuator. The user should be aware that in any application, bracket design could significantly change the vibration levels at the actuator base. Therefore, every effort should be made to ensure the bracket is as stiff as possible so that engine vibrations are not unduly amplified, creating an even more severe environment at the actuator.

Attitude
The UG-25+ actuator can be installed in a vertical or near vertical position without affecting its calibration. Do not install more than 45 degrees from vertical. See the outline drawing for installation instructions and dimensions.

Mounting Dimension
When using the O-ring to seal between the UG-25+ actuator and actuator mounting pad on the engine, the mounting hole should have dimensions of (82.7 to 83.2) mm / (3.255 to 3.275) inches in order to provide the correct amount of squeeze on the o-ring. The mounting hole must be concentric with the drive in order to avoid side-loading the UG-25+ actuator drive shaft. (This O-ring part number 1355-308 can be ordered separately from Woodward.)

Lifting Method
When mounting the UG-25+ on the engine, a lifting sling can be used as shown in the photo below.

NOTICE
This lifting method should be used only for normal installation of the UG-25+. Do NOT use this method for removing the UG-25+ if the governor may be stuck in/on the engine drive. This could result in serious damage to the UG-25+.
Drive Connection

Make sure the UG-25+ actuator drive shaft turns freely before installing the actuator. The drive gear or coupling must slip freely into the actuator drive of the engine.

In case of a keyed drive shaft, torque the nut that secures the drive gear to (34 to 41) N-m / (25 to 30) lb-ft maximum.

Do not apply external force. The drive must be free of binding, side load, or excess endplay. Improper alignment or fit between the parts can result in excessive wear or actuator-drive seizure.

Mount the UG-25+ actuator squarely on the mounting pad. Torque the mounting bolts evenly. There can be no movement or rocking of the actuator on the engine-mounting pad.

Control Linkage

The terminal shaft has a travel of 42 degrees. Use 2/3 of the total rotation between no load and full load. The additional "overtravel" should be split and used at both ends to provide maximum fuel when required and to assure shutdown at minimum-fuel actuator position (see Figure 2-2).

WARNING
To prevent possible serious injury or loss of life, or damage to the engine, be sure to allow sufficient overtravel at each end of the terminal shaft so the actuator can shut down the engine, and also give maximum fuel when required. Misadjusted linkage could prevent the actuator from shutting down the engine.
Many control problems are related to the linkage between the actuator and the engine. Use only high-quality rod-ends for the linkage which will last under the nearly constant motion associated with precise speed control. The linkage must be stiff, not subject to engine-caused vibration. The linkage must be as light as possible and still maintain the attributes of stiffness. Linkage which is too heavy can damage the actuator as well as make it difficult to achieve steady control.

Installed linkages must operate smoothly, be free of binding, and free of lost motion due to worn parts. If there is a collapsible member in the linkage, be sure it does not yield each time the actuator moves the linkage rapidly.

![Diagram of terminal shaft travel](image_url)

Figure 2-3. Terminal Shaft Travel
Use a linear linkage for most diesel applications. Most gas-fueled engines will require a non-linear linkage. See Figures 2-3 and 2-4 for information on the arrangements of linear and nonlinear connections. Linear linkage moves the fuel setting shaft in direct proportion to the movement of the actuator terminal shaft.

Figure 2-4. Linear Linkage Figure 2-5. Non-linear Linkage

A non-linear fuel arrangement lets the actuator move the fuel setting more at maximum settings than it does at minimum settings. Woodward application note 50516, Governor Linkage for Butterfly Throttle Valves, provides more information about non-linear linkage.

Design the linkage so the power output of the engine is proportional to the position of the actuator terminal shaft.

Follow the engine manufacturer's instructions on linkage selection, installation, and adjustment. In almost all cases, the linkage designed for a UG-8 governor will work with the UG-25+ actuator, with the exception that the standard terminal shaft size (for the 25 ft-lb version) is 0.625-36 serrated versus the UG-8 standard size of 0.50-36 serrated. The terminal shaft size for the 31 ft-lb version is 0.750-48 serrated. In the case of a direct exchange, make sure that the engine fuel linkage is in good condition and the installation of the terminal lever on the actuator is in the same position as it was on the old governor.

Oil Supply

See Woodward manual 25071, Oils for Hydraulic Controls, for more details on oil supply.

Use the information given in Figures 2-5 and 2-6 as a guide in the selection of a suitable oil. Oil grade selection is based on the operating temperature range of the actuator. Also use this information to aid in recognizing and correcting common problems associated with oil used in the actuator. Many operation and maintenance problems associated with UG-25+ actuators are directly related to the selection and condition of the oil in the actuator. Use care in the selection and make sure that the oil in the actuator is not contaminated.

The oil in the UG-25+ actuator is both a lubricating and hydraulic oil. It must have a viscosity index that allows it to perform over the operating temperature range and it must have the proper blending of additives that cause it to remain stable and predictable over this temperature range.
The UG-25+ actuator is designed to give stable operation with most oils, if the fluid viscosity at the operating temperature is within a 50 SUS to 3000 SUS (Saybolt Universal Seconds) range (see Figure 2-6). Poor actuator response or instability can be an indication that the oil is too thick or too thin.

Actuator oil must be compatible with seal material, that is, nitrile, polyacrylic, and fluorocarbon. Many automotive and gas engine oils, industrial lubricating oils, and other oils of mineral or synthetic origin meet these requirements.

Fill the UG-25+ actuator with about 2.1 liters (2.2 quarts) of oil, to a level visible in the oil sight glass. After the engine is started and the actuator is at operating temperature, add oil if necessary. Oil must be visible in the glass under all operating conditions.
Excessive component wear or seizure in the actuator indicates the possibility of:

1. Insufficient lubrication caused by:
 - an oil that flows slowly when it is cold, especially during start-up;
 - no oil in the actuator.

2. Contaminated oil caused by:
 - dirty oil containers;
 - an actuator exposed to heating and cooling cycles, which created condensation of water in the oil.

3. Oil not suitable for the operating conditions caused by:
 - changes in ambient temperature;
 - an improper oil level which creates foamy, aerated oil.

Operating an actuator continuously beyond the high limit temperature of the oil will result in oil oxidation. This is identified by varnish or sludge deposits on the actuator parts. To reduce oil oxidation, lower the actuator operating temperature with a heat exchanger or other means, or change to an oil more oxidation-resistant at the operating temperature.

WARNING

To prevent possible serious injury or loss of life, or damage to the engine, resulting from engine overspeed or a runaway engine, be sure to use only oil that falls within the 50 SUS to 3000 SUS range. Using oils outside this range could cause the actuator to be unable to prevent a runaway engine.

<table>
<thead>
<tr>
<th>CENTISTOKES (CST, CS, OR CTS)</th>
<th>SAYBOLD UNIVERSAL SECOND (SUS) NOMINAL AT 100 DEGREES F</th>
<th>SAE MOTOR (APPROXIMATE)</th>
<th>SAE GEAR (APPROXIMATE)</th>
<th>ISO</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>80</td>
<td>5W</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>106</td>
<td>5W</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>151</td>
<td>10W</td>
<td>75</td>
<td>32</td>
</tr>
<tr>
<td>46</td>
<td>214</td>
<td>10</td>
<td>75</td>
<td>46</td>
</tr>
<tr>
<td>68</td>
<td>310</td>
<td>20</td>
<td>80</td>
<td>68</td>
</tr>
<tr>
<td>100</td>
<td>463</td>
<td>30</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>150</td>
<td>696</td>
<td>40</td>
<td>85</td>
<td>150</td>
</tr>
<tr>
<td>220</td>
<td>1020</td>
<td>50</td>
<td>90</td>
<td>220</td>
</tr>
<tr>
<td>320</td>
<td>1483</td>
<td>60</td>
<td>115</td>
<td>320</td>
</tr>
<tr>
<td>460</td>
<td>2133</td>
<td>70</td>
<td>140</td>
<td>460</td>
</tr>
</tbody>
</table>

Oil Maintenance

Replace the actuator oil if it is contaminated, and change it if it is suspected of contributing to instability. Drain the oil while it is still hot. Flush the actuator with a clean solvent having some lubricating quality (fuel oil or kerosene) before refilling with new oil. If drain time is insufficient for the solvent to completely drain or evaporate, flush the actuator with the same oil it is being refilled with to avoid dilution and possible contamination of the new oil.

Oil that has been carefully selected to match the operating conditions and is compatible with actuator components should give long service between oil changes. Check oil conditions regularly and change oil if any deterioration or contamination is suspected.

Regularly scheduled oil changes will extend the life of the actuator and improve actuator operation. Properly selected oil should permit annual oil changes, but more frequent changes are recommended. Too long an interval between oil changes can result in sticking of components and plugged oil passages.
Heat Exchanger

A heat exchanger for the UG-25+ actuator is not available from Woodward.

Recommended Service Intervals

Carefully consider the choice of actuator oil with your oil supplier. Monitor the condition of the oil, especially the build-up of deposits, to ensure that the oil remains within the operating conditions defined by the oil supplier. See manual 25071 for more information on oil and oil maintenance.

To change oil, remove the drain plug and drain out the old oil. Flush the actuator by filling it with fuel oil, and with the prime mover running at low speed, cycle the actuator by increasing the Stability knob setting on the user interface until the actuator hunts. Let the actuator hunt for a minute or two, then stop the engine and drain the actuator. Flush the actuator once again. Refill the actuator with oil (see Chapter 2, Oil Supply).

Restart the engine and reset the Stability knob.

Woodward recommends overhauling the UG-25+ actuator to inspect for wear and to replace seals, bearings, etc. The overhaul interval of the UG-25+ will be dependent on the application. Woodward recommends using the same interval as the engine. Units may need to be re-manufactured/overhauled before that time if there is oil leakage, parts become loose, or if the unit experiences severe operating conditions of heat or vibration.
Chapter 3.
Electrical Installation

Introduction

This chapter provides instructions for making the proper electrical connections to the UG-25+ actuator. Detailed wiring diagrams and recommended wiring practices are given to make the electrical installation as straightforward as possible. The only input that is absolutely required is a power connection and a position command signal; all others are optional features. All wiring and accessories (wire ferrules, cable gland nuts, etc) are provided by the customer, but are shown in this chapter for ease of assembly.

The UG-25+ actuator has an operating voltage range of (18 to 32) V (dc). This input is protected against reverse input polarity, and consumes approximately 27 W maximum power at a peak current of 1.5 A (18 V) at 25 °C. Maximum power at the UG-25+ actuator is only realized if an internal fault occurs. Nominal operating current will be less than 500 mA at 24 V (dc) nominal.

The control system should be protected with a 6 A fuse in the voltage supply lines. The application should be configured to apply power to the UG-25+ actuator when the engine is first cranked, or slightly before.

Unit Grounding

The UG-25+ actuator housing must be electrically bonded to earth ground through the mechanical mounting interface in order to ensure proper EMC and Safety compliance. Do this using a 1” wide braided grounding strap with as short a length as possible. The ground strap can be tied to the ground post on the front of the actuator, directly below the user interface panel. Assure the ground strap is in contact with bare (unpainted) metal.

Figure 3-1. Location of Ground Strap

NOTICE

Do not connect any cable grounds to “instrument ground”, “control ground”, or any non-earth ground system. Make all required electrical connections based on the wiring diagrams (Figures 3-2 and 3-3).
Shielded Wiring

The use of cable with individually shielded-twisted pairs is required where indicated by the control-wiring diagram (Figure 3-2). Cable shields must be terminated as indicated in the control-wiring diagram using the installation notes described below. DO NOT attempt to directly ground the shield at both ends or an undesired ground loop condition may occur. It is best to terminate the shield at the UG-25+ actuator, leaving the other end of the shield unterminated or electrically floating.

Installation Notes

- Wires exposed beyond the shield should be as short as possible, not exceeding 50 mm (2 inches).
- The shield termination wire (or drain wire) should be kept as short as possible, not exceeding 50 mm (2 inches), and where possible the diameter should be maximized.
- Installations with severe electromagnetic interference (EMI) may require additional shielding precautions. Contact Woodward for more information.

Failure to provide shielding can produce abnormal conditions which are difficult to diagnose. Proper shielding at the time of installation is required to assure satisfactory operation of the product.

Electrical Connections

Prior to installation, refer to the wiring diagrams and the representative I/O interfaces schematic in this chapter. Also, review the hardware I/O specifications in Appendix B.

Use 1.3 mm² (16 AWG) stranded copper wire with insulation that meets temperature requirements in the harness design. A wiring harness stress relief within 400 mm (16 inches) of the UG-25+ actuator is recommended.

Contain the harness with wire loom or sheath to make it into a single bundle or a cable with an overall jacket containing the signal wires. Use grommets when passing the harness through metal panels.

Recommended Signal Wire Specifications

1.3 mm² (16 AWG), Minimum Insulation O.D. 1.96 mm (0.077 inch), –65 °C to +200 °C, 1000 V (rms), 19/29 Stranded Conductor, Teflon Insulation (TFE).

All field communications and commands enter the UG-25+ actuator through a threaded port in the top of the UG-25+ actuator User Interface panel assembly. These signal wires should be contained in a cable with an overall jacket or bundled together with an overall sheath. To maintain the IP-56 ingress protection rating, the field cable must be installed through a cable gland nut, which is threaded into the cable entry port in the top of the User Interface panel. Several suggested gland nut sizes are listed in table below, depending on the overall diameter of the field cabling used in the installation.

Remove the wiring access cover plate located on the front of the User Interface panel by removing the six M4 x 0.7, 10 mm long locking screws (Woodward part number 1031-1806) to access all customer field connection terminal blocks. Securely replace the wiring cover plate after completing the wiring connections to ensure the integrity of electromagnetic noise interference capabilities of the UG-25+ actuator.
The UG-25° actuator will not meet ingress protection requirements unless the cover is in place. See Figure 3-1 for warning label found on the inside of the cover.

WARNING

INFORMATION FOR REFERENCE ONLY

Refer to Installation Manual B26580 Prior to wiring, testing (Hi-Pot, etc.) or installing ferrules on wires.

Hi-Pot jumper must be removed before Hi-Pot testing is performed. Hi-Pot jumper must be installed prior to governor operation.

Access panel fasteners: 1031-1806 (size: M4 x 0.7 x 10MM long)

![TERMINAL #’s](image)

<table>
<thead>
<tr>
<th>TERMINAL #’s</th>
<th>SIGNAL NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-- NOT USED</td>
</tr>
<tr>
<td>2</td>
<td>-- AUX PWR OUT GND</td>
</tr>
<tr>
<td>3</td>
<td>-- ANALOG GND</td>
</tr>
<tr>
<td>4</td>
<td>-- CHASSIS GND</td>
</tr>
<tr>
<td>5</td>
<td>-- AUX PWR OUT+</td>
</tr>
<tr>
<td>6</td>
<td>-- NOT USED</td>
</tr>
<tr>
<td>7</td>
<td>-- NOT USED</td>
</tr>
<tr>
<td>8</td>
<td>-- NOT USED</td>
</tr>
<tr>
<td>9</td>
<td>-- NOT USED</td>
</tr>
<tr>
<td>10</td>
<td>-- NOT USED</td>
</tr>
<tr>
<td>11</td>
<td>-- STATUS OUT</td>
</tr>
<tr>
<td>12</td>
<td>-- SHIELD</td>
</tr>
<tr>
<td>13</td>
<td>-- POS CMD 4-20 mA +</td>
</tr>
<tr>
<td>14</td>
<td>-- POS CMD 4-20 mA -</td>
</tr>
<tr>
<td>15</td>
<td>-- NOT USED</td>
</tr>
<tr>
<td>16</td>
<td>-- NOT USED</td>
</tr>
<tr>
<td>17</td>
<td>-- HI-POT</td>
</tr>
<tr>
<td>18</td>
<td>-- HI-POT</td>
</tr>
<tr>
<td>19</td>
<td>-- PWR INPUT+</td>
</tr>
<tr>
<td>20</td>
<td>-- PWR INPUT RET</td>
</tr>
<tr>
<td>21</td>
<td>-- PWR INPUT RET</td>
</tr>
<tr>
<td>22</td>
<td>-- PWR INPUT +</td>
</tr>
</tbody>
</table>

Figure 3-2. Access Cover Instruction Label

Slide the cable gland over the end of the cable with the cable gland threads toward the cable end. Select the appropriate cable gland from the chart below, depending upon the cable size.

<table>
<thead>
<tr>
<th>Woodward Part Number</th>
<th>Heyco Part Number</th>
<th>Cable Diameter in mm</th>
<th>Mounting Hole Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1325-4007</td>
<td>4575</td>
<td>9.5 to 12.5</td>
<td>0.750-14 (3/4" NPT)</td>
</tr>
<tr>
<td>1325-4008</td>
<td>4573</td>
<td>12.5 to 16</td>
<td>0.750-14 (3/4" NPT)</td>
</tr>
<tr>
<td>1325-4009</td>
<td>4574</td>
<td>16 to 20.5</td>
<td>0.750-14 (3/4" NPT)</td>
</tr>
</tbody>
</table>

Remove approximately 100 mm (4 inches) of the overall cable jacket to provide a sufficient service loop inside the User Interface panel to land the individual signal wires on the proper internal terminal.

Strip approximately 10 mm (0.4 inch) of insulation from each individual signal wire and crimp on a wire ferrule, Woodward part number 1606-667 (Phoenix part number 3200043) for 16 AWG wire, to the end of each signal wire. Use the proper crimp tool, "CRIMPFOX 6H" Woodward part number 8996-2197 (Phoenix part number 12 12 046) to crimp the ferrules onto the signal wires with a hexagonal crimp. The wire should extend to the end of the ferrule, but not beyond it. If the wire extends beyond the end of the ferrule, cut the excess wire off with wire cutters. The ferrule assures the signal wire does not slip out of the terminal block in high vibration environments. Tinning (soldering) the ends is not an acceptable option since the spring terminals will not grip the wires as well.

Remove the threaded plug from the customer wiring port located on the top of the User Interface panel. Insert the ferrules and wires through the threaded port far enough to hook up the wiring. Use the small terminal release tool (Woodward part number ST-15011, WAGO part number 236-332), located inside the wiring cavity of the UG-25° actuator, to assist in the insertion of the ferrule on the end of each signal wire.
into its associated terminal location. The terminal release tool is the best way to release the spring-loaded
connection clamp located in the wiring terminal block, but a thin, flat-bladed screw driver can also be used
if the terminal release tool is not available.

To provide better access to the terminal blocks, install wires going into Terminals 8 through 1 first,
followed by the wires going into Terminals 16 through 9 next, and then wires going to Terminals 22
through 17 next.

After installing the wires, apply thread sealant (Woodward part number
2001-4002, Loctite 572 or equivalent) to the NPT threads and screw the cable gland into the customer
wiring port in the top of the UG-25+ actuator User Interface panel assembly. Make sure that the cable’s
overall jacket extends slightly past the cable gland so that the rubber seal completely and tightly grips the
cable jacket.

Tighten the NPT thread to 10 N·m (88 lb-in).

Then tighten the cable gland top dome nut securely against the rubber gland as shown below.

Do not over-tighten the top dome nut. Over-tightening the top dome nut causes the rubber gland to
“bulge” out the top of the dome nut, as shown above, and compromises the IP-56 ingress protection seal.

Replace the wiring access cover plate and the six M4 screws holding it to the User Interface panel.
Torque all six screws to (3.4 ± 0.2) N·m / (30 ± 2) lb-in.

When routing cables, allow a sufficient service loop when routing the cable around corners. Two
customer cable clamp mounting holes are located on the top, front corners of the User Interface panel
and accept M5 x 0.8, 10 mm long screws, Woodward part number 1029-972.
Manual 26580 UG-25+ Actuator

POWER INPUT +
- 19
- 22

POWER INPUT -
- 21
- 20

ANALOG GND
- N.C. 1
- N.C. 7
- N.C. 6
- N.C. 15

CHASSIS GND
- N.C. 8
- N.C. 9
- N.C. 10

4 – 20 mA Position Command
- N.C. 16

AUX POWER OUT +
- 14

AUX POWER OUT -
- 13

EXTERNAL STATUS OUT
- N.C. 11

INDICATOR LAMP
- 4

HI-POT JUMPER
- 17
- 18

Figure 3-5. UG-25+ Actuator Application Wiring

1. WHEN USING REDUNDANT POWER, CONNECT TO TERMINALS 22 AND 20 IN THE SAME MANNER AS TERMINALS 19 AND 21 (USING A 6 A STANDARD FUSE). OTHERWISE LEAVE THESE TERMINALS UNTERMINATED.

2. POSITION COMMAND – CONTROL SIGNAL TO THE ACTUATOR.

3. A CONDITIONED 24 V POWER SOURCE IS PROVIDED FOR POWERING THE STATUS OUTPUT. THIS IS AN OUTPUT VOLTAGE THAT FOLLOWS FROM THE POWER INPUT +. A FUSE SHOULD BE USED AS SHOWN.

4. THIS IS AN OPTIONAL HOOKUP. THIS PROVIDES FOR A REMOTE “UNIT HEALTHY” STATUS. IF AN EXTERNAL INDICATOR LAMP IS DESIRED, WIRE AS SHOWN.

5. CHASSIS GROUND IS PROVIDED, IF NEEDED.

6. SHIELDING IS NOT REQUIRED FOR EMC COMPLIANCE, HOWEVER A SHIELD TERMINATION POINT IS PROVIDED IN THE EVENT SHIELDING IS DESIRED BY THE CUSTOMER. NOTE: THE SHIELD TERMINATION POINT CONSISTS OF A HIGH-FREQUENCY CAPACITOR WHICH ALLOWS THE CUSTOMER TO ‘HARD GROUND’ THE SHIELD ON THE OPPOSITE END OF THEIR CABLE, IF DESIRED.

7. HI-POT JUMPER MUST BE INSTALLED FOR NORMAL OPERATION AND MUST BE REMOVED ONLY DURING A HI-POT TEST, THEN RE-INSTALLED FOR OPERATION.
Do not connect any cable grounds to “instrument ground”, “control ground”, or any non-earth ground system. Make all required electrical connections based on the wiring diagrams (Figures 3-2 and 3-3).

The Hi-Pot jumper must be installed for normal operation, and must be removed only during a Hi-Pot test.
Figure 3-6b. Connector Wiring
USER PANEL

<table>
<thead>
<tr>
<th>SIGNAL NAME</th>
<th>TERMINAL #</th>
<th>PCB REFERENCE DESIGNATOR</th>
<th>SIGNAL FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOT USED</td>
<td>1</td>
<td>TB2-1</td>
<td></td>
</tr>
<tr>
<td>AUX PWR OUT GND</td>
<td>2</td>
<td>TB2-2</td>
<td>OPTIONAL: AUX POWER OUT GND; RETURN FOR SUPPLY POWER FOR STATUS OUT -- OUTPUT ONLY</td>
</tr>
<tr>
<td>ANALOG GND</td>
<td>3</td>
<td>TB2-3</td>
<td>SIGNAL GROUND</td>
</tr>
<tr>
<td>CHASSIS GND</td>
<td>4</td>
<td>TB2-4</td>
<td>CHASSIS GROUND</td>
</tr>
<tr>
<td>AUX PWR OUT +</td>
<td>5</td>
<td>TB2-5</td>
<td>OPTIONAL: AUX POWER OUT +; SUPPLY POWER + FOR STATUS OUT -- OUTPUT ONLY</td>
</tr>
<tr>
<td>NOT USED</td>
<td>6</td>
<td>TB2-6</td>
<td></td>
</tr>
<tr>
<td>NOT USED</td>
<td>7</td>
<td>TB2-7</td>
<td></td>
</tr>
<tr>
<td>NOT USED</td>
<td>8</td>
<td>TB2-8</td>
<td></td>
</tr>
<tr>
<td>NOT USED</td>
<td>9</td>
<td>TB3-1</td>
<td></td>
</tr>
<tr>
<td>NOT USED</td>
<td>10</td>
<td>TB3-2</td>
<td></td>
</tr>
<tr>
<td>STATUS OUT</td>
<td>11</td>
<td>TB3-3</td>
<td>OPTIONAL: PROVIDES A REMOTE 'UNIT HEALTHY' STATUS</td>
</tr>
<tr>
<td>SHIELD</td>
<td>12</td>
<td>TB3-4</td>
<td>USE FOR TERMINATION WHEN THERE IS A SHIELDED CABLE</td>
</tr>
<tr>
<td>POS CMD 4-20 mA +</td>
<td>13</td>
<td>TB3-5</td>
<td>4-20 mA POSITION COMMAND SIGNAL +</td>
</tr>
<tr>
<td>POS CMD 4-20 mA -</td>
<td>14</td>
<td>TB3-6</td>
<td>4-20 mA POSITION COMMAND SIGNAL -</td>
</tr>
<tr>
<td>NOT USED</td>
<td>15</td>
<td>TB3-7</td>
<td></td>
</tr>
<tr>
<td>NOT USED</td>
<td>16</td>
<td>TB3-8</td>
<td></td>
</tr>
<tr>
<td>HI-POT</td>
<td>17</td>
<td>TB4-1</td>
<td>HI-POT (JUMPER FROM TERMINAL #17 TO TERMINAL #18 ALREADY INSTALLED, REMOVE FOR HI-POT TEST -- SEE MANUAL)</td>
</tr>
<tr>
<td>HI-POT</td>
<td>18</td>
<td>TB4-2</td>
<td>HI-POT (JUMPER FROM TERMINAL #17 TO TERMINAL #18 ALREADY INSTALLED, REMOVE FOR HI-POT TEST -- SEE MANUAL)</td>
</tr>
<tr>
<td>PWR INPUT +</td>
<td>19</td>
<td>TB4-3</td>
<td>POWER INPUT +</td>
</tr>
<tr>
<td>PWR INPUT RET</td>
<td>20</td>
<td>TB4-4</td>
<td>POWER INPUT RETURN; USE WITH REDUNDANT POWER, OTHERWISE LEAVE PIN FLOATING</td>
</tr>
<tr>
<td>PWR INPUT RET</td>
<td>21</td>
<td>TB4-5</td>
<td>POWER INPUT RETURN</td>
</tr>
<tr>
<td>PWR INPUT +</td>
<td>22</td>
<td>TB4-6</td>
<td>POWER INPUT +; USE WITH REDUNDANT POWER, OTHERWISE LEAVE PIN FLOATING</td>
</tr>
</tbody>
</table>
Figure 3-6d. UG-25+ Actuator Terminals
<table>
<thead>
<tr>
<th>Terminal Position</th>
<th>Description</th>
<th>Comment</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (TB2-1)</td>
<td>No Connection</td>
<td>Return for Supply Power. Do not connect Analog Ground to this terminal.</td>
<td>N/A</td>
</tr>
<tr>
<td>2 (TB2-2)</td>
<td>Optional Power Out – (Return for 18 V to 32 V (dc) supply input)</td>
<td>Return for Supply Power. Do not connect Analog Ground to this terminal.</td>
<td>Output</td>
</tr>
<tr>
<td>3 (TB2-3)</td>
<td>Analog Ground</td>
<td>Do not connect Analog Ground to Input Power (–)</td>
<td>N/A</td>
</tr>
<tr>
<td>4 (TB2-4)</td>
<td>Chassis Ground</td>
<td>This terminal connects to Chassis ground through the circuit board, and then to the UG-25+ actuator metal housing.</td>
<td>N/A</td>
</tr>
<tr>
<td>5 (TB2-5)</td>
<td>Optional Power Out + (Supply Power, 18 V to 32 V (dc), 1.5 A max.)</td>
<td>This is an output only! Do not connect external power to this power output. This output voltage follows the Power Input(+) minus a protection diode drop.</td>
<td>Output</td>
</tr>
<tr>
<td>6 (TB2-6)</td>
<td>No Connection</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>7 (TB2-7)</td>
<td>No Connection</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>8 (TB2-8)</td>
<td>No Connection</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>9 (TB3-1)</td>
<td>No Connection</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>10 (TB3-2)</td>
<td>No Connection</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>11 (TB3-3)</td>
<td>External Status Output</td>
<td>This provides a remote “Unit Healthy” status. See UG-25+ actuator application wiring Figure 3-2.</td>
<td>Output, open drain, low-side switch</td>
</tr>
<tr>
<td>12 (TB3-4)</td>
<td>Shield</td>
<td>This terminal is a conditioned shield tie point. (capacitively coupled to Chassis Ground)</td>
<td>N/A</td>
</tr>
<tr>
<td>13 (TB3-5)</td>
<td>Position Command +</td>
<td>This is the positive input of the (4 to 20) mA circuitry from the actuator's Position Command signal.</td>
<td>Input</td>
</tr>
<tr>
<td>14 (TB3-6)</td>
<td>Position Command –</td>
<td>This is the negative input of the (4 to 20) mA circuitry from the actuator's Position Command signal.</td>
<td>Input</td>
</tr>
<tr>
<td>15 (TB3-7)</td>
<td>No Connection</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>16 (TB3-8)</td>
<td>No Connection</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>17 (TB4-1)</td>
<td>Hi-Pot Test Jumper</td>
<td></td>
<td>Input</td>
</tr>
<tr>
<td>18 (TB4-2)</td>
<td>Hi-Pot Test Jumper</td>
<td></td>
<td>Input</td>
</tr>
<tr>
<td>19 (TB4-3)</td>
<td>Power Input +</td>
<td>Supply Power, (18 to 32) V (dc), 1.5 A max.</td>
<td>Input</td>
</tr>
<tr>
<td>20 (TB4-4)</td>
<td>Power Input –</td>
<td>Return for (18 to 32) V (dc) Supply Input.</td>
<td>Input</td>
</tr>
<tr>
<td>21 (TB4-5)</td>
<td>Power Input –</td>
<td>Return for (18 to 32) V (dc) Supply Input.</td>
<td>Input</td>
</tr>
<tr>
<td>22 (TB4-6)</td>
<td>Power Input +</td>
<td>Supply Power, (18 to 32) V (dc), 1.5 A max.</td>
<td>Input</td>
</tr>
</tbody>
</table>
Detailed Description of UG-25+ Actuator Electrical I/O

Customer Connections

Internal Front Panel Connections / Logic

Power Input 1
(18-32 Vdc)

Power Input 2
(18-32 Vdc)

Position Command
(4-20 mA)

Status Indication Output

4-20 mA
Voltage
Conversion

L-Series

+V

AUX4

Status

Figure 3-4. Internal Block Diagram

Power Supply Input 1 (18 V to 32 V Power Input (+) at Terminal 19, Power Input (–) at Terminal 21)

Power Supply Input 2 (18 V to 32 V Power Input (+) at Terminal 22, Power Input (–) at Terminal 20)

The two power-supply inputs are high-signal selected using diodes, so the input with the higher voltage will conduct, and other will remain in "standby" mode until the first supply's voltage drops below the "standby" supply's voltage. Both can remain connected, and there will be no electrical current flow from one power source to the other.

The UG-25+ actuator will handle a voltage range of 18 V to 32 V (dc), with an absolute maximum of 60 V.

The power supply terminals are reverse polarity protected, and in the case that a reverse polarity condition exists, the UG-25+ actuator will not power-up.

Woodward recommends using a 6 A fuse on the power supply line feeding Terminals 19 and 22 of the UG-25+ actuator.

⚠️ WARNING

The input power must be fused. Failure to fuse the UG-25+ actuator could, under exceptional circumstances, lead to personal injury, damage to the control valve, and/or explosion.

⚠️ NOTICE

If circuit ground and chassis ground are shorted together at the UG-25+ actuator, there is an increased risk of EMI susceptibility.
Woodward recommends using a standard 6 A fuse on the (18 to 32) V (dc) input as shown in Figure 3-2. **Do NOT use a slow-blow-type fuse in this application.**

Relay Driver Output (Status/Unit Healthy)
A discrete output is provided to serve as a status indicator, mimicking the front panel Unit Healthy LED. This switchable discrete output is a closure to ground capable of sinking 500 mA maximum with an output voltage rise of less than 1.5 V, and it is available to power external relays for devices such as alarms or fuel shutoff solenoids. The circuit is protected internally against over-current and inductive spikes, so external clamping is not necessary.

Analog Position Command
This input accepts a 4 mA to 20 mA current input that comes from an external electronic control system's speed setpoint.

The user must provide an external means to clamp the position command input at 3 mA and 21 mA. An analog position command input below 3 mA or above 21 mA is out of the normal 4 mA to 20 mA input range and may cause the analog position command function to become disabled even though the Analog indication LED remains on.
To avoid EMI interference between the wire bundle and the interface panel, route the wires out of the connectors away from the panel controls. Do not allow the interface wiring to drape in front of the panel controls.

MAGNETIC FIELDS—During installation, avoid placing the interface panel in close proximity with any source of strong magnetic field (permanent magnet motor, magnetized tools, etc.). Strong magnetic fields can inject error into the adjustments available on the front of the interface panel.

High Potential Testing

Occasionally, marine certification requires that a high potential (HI-POT) test of the engine or prime mover be performed after the UG-25+ actuator is installed. The UG-25+ actuator is designed to accommodate this testing. Before performing any HI-POT testing, remove the small HI-POT jumper, Woodward part number 2008-1443, located between Terminals 17 and 18, which are found under the wiring access cover plate on the front of the User Interface panel.

The HI-POT test voltage is +755 V (dc). Repeat the test with the polarity reversed at –755 V (dc).

Apply the HI-POT voltage between all customer input and output terminals (located under the wiring access cover plate on the front of the User Interface panel) connected together and chassis ground (located on the front of the UG-25+ actuator), except that Terminal 4 (chassis ground) and Terminal 12 (shield) must remain un-connected and not electrically tied to the other terminals during this test. The HI-POT test voltage ramp-up time is 5 seconds, and dwell is 60 seconds, or as specified by the certification authority.

Use the ground terminal located on the outside of the User Interface panel as the chassis ground tie point for the HI-POT test. Using Terminal 4 as the chassis ground tie point during the test does not properly check the internal chassis to circuit board connection.

Do not perform “AC” Hi-Pot testing on this assembly.

Securely replace the jumper between Terminals 17 and 18 after completing the HI-POT test to ensure that the electrical power surge protection on the electrical circuit board is maintained during normal operation.

Install the jumper between Terminals 17 and 18 for normal operation. The UG-25+ actuator may be damaged by power surges if this jumper is not properly installed.

Insulation Resistance Testing

Occasionally, marine certification requires that an insulation resistance test of the engine or prime mover be performed after the UG-25+ actuator is installed. The UG-25+ actuator is designed to accommodate this testing. Before performing any insulation resistance testing, remove the small HI-POT jumper, Woodward part number 2008-1443, located between Terminals 17 and 18, which is found under the wiring access cover plate on the front of the User Interface panel.

Connect the plus (+) probe of a multi-meter to each terminal block location in turn and the minus (–) probe to chassis ground.
Do not use test equipment that is powered from a power source that exceeds 64 V (dc) to perform the insulation resistance testing. It may damage the actuator electronics.

The resistance measured between each terminal block location (Terminals 1 through 3, 5 through 11, 13 through 16, and 19 through 22) and chassis ground must be greater than 830 kΩ.

Use the ground terminal located on the outside of the User Interface panel as the chassis ground tie point for the insulation resistance test. Using Terminal 4 as the chassis ground tie point during the test does not properly check the internal chassis to circuit board connection.

Securely replace the jumper between Terminals 17 and 18 after completing the insulation resistance test to ensure that the electrical power surge protection on the electrical circuit board is maintained during normal operation.

Install the jumper between Terminals 17 and 18 for normal operation. The UG-25+ actuator may be damaged by power surges if this jumper is not properly installed.
Chapter 4. Description of Operation

General

The UG-25+ actuator receives a 4 mA to 20 mA Position Command signal from an external electronic control. This mA position command is converted into a direct proportional output position for the actuator's terminal shaft. This conversion is such that a 4 mA position command directs the terminal shaft to go to minimum position, a 20 mA position command directs the terminal shaft to go to maximum position, and a 12 mA position command directs the terminal shaft to go to mid position.

The actuator terminal shaft provides a maximum rotational travel of 42 degrees for controlling diesel, gas, or dual fuel engines, or steam turbines.

The UG-25+ actuator front panel provides a convenient operating interface for the user, and includes:

UNIT HEALTHY LED—This LED illuminates when there is electrical power supplied to the UG-25+ actuator and the L-Series electronic controller internal to the UG-25+ actuator is working properly. This LED turns off if supply power is removed or there is a fault in the L-Series electronics.

The control has a switching power supply with excellent spike, ripple, and EMI (electromagnetic interference) rejection. Discrete inputs are capable of rejecting EMI and variable resistance in switch or relay contacts. Analog inputs are differential type with extra filtering for common-mode noise rejection.

The control provides one discrete output, which provides a Unit Healthy indication.

WARNING

The UG-25+ actuator should not be used as the primary means of shutting down the engine.
Principal of Operation

The UG-25+ actuator consists of the following three main components:

- **L-Series Controller**
 Assumes a rotary output position directly proportional to the (4 to 20) mA input current from an external control.

- **Hydraulic Amplifier**
 Amplifies the work output of L-Series control.

- **User Interface**
 Provides local Unit Healthy status. Also provides electrical connector for power and customer inputs.

The hydraulic amplifier operation is depicted in Figure 4-2, which illustrates the working relationship of the various parts. The main elements of the hydraulic amplifier are listed below:

Oil Pump
The oil pump is a Gerotor-type pump element, driven by the actuator drive-shaft to provide oil pressure for the actuator. The self-contained sump feeds oil to the pump.

Relief Valve
Set to maintain an internal operating pressure set at 1034 kPa (150 psi).

Rotary to Linear Conversion Mechanism
This mechanism converts the rotary output position of the L-Series controller into linear motion required to operate the pilot valve of the amplifier.

Return Spring
The conversion mechanism incorporates a return spring which is used to move the pilot valve to the minimum fuel position upon loss of function of the L-Series controller.

Pilot Valve Plunger
The 3-way pilot valve directs oil flow to the control side of the differential area of the power piston or towards the actuator drain.

Power Piston, Terminal Shaft Lever, and Terminal Shaft
The terminal shaft lever converts the linear motion of the differential-type power piston into a rotary motion of the terminal shaft, which in turn moves the fuel linkage. The terminal-shaft position is fed back to the pilot valve to provide the proportional control.
Increase in Position Command Signal
An increase in the externally supplied Position Command signal causes the L-Series controller output shaft to rotate CCW when viewed from the top on the UG-25+ actuator. This, in turn, causes the pilot valve to lift allowing control oil pressure to act on the underside of the power piston. This oil pressure underneath the power piston opposes the pump outlet oil pressure acting on the topside and causes the piston to rise, since the piston bottom has twice the area of the topside.

As the power piston rises, the power piston rod moves with it and rotates the terminal shaft, converting the output motion back to rotary. One end of the floating lever is directly connected to the power piston rod and this end rises correspondingly.
When the desired terminal shaft position is reached, the floating lever provides a mechanical feedback/restoring signal between the power piston rod and the pilot valve. During this condition, the pilot valve will be at its “null” position. Therefore, the L-Series control and the hydraulic amplifier are proportional devices with their positions a direct function of the externally supplied Position Command signal.

Decrease in Position Command Signal
A decrease in the externally supplied Position Command signal causes the L-Series controller output shaft to rotate CW. This, in turn, causes the pilot valve to lower allowing the control oil pressure acting on the underside of the power piston to flow to drain. The pump outlet oil pressure acting on the topside of the power piston will cause the piston to lower.

As the power piston lowers, the power piston rod moves with it and rotates the terminal shaft towards the minimum fuel direction. The floating lever then lowers its end coupled to the power piston rod and provides its position feedback/restoring feedback to the power piston and pilot valve.

Loss of Position Command
Upon loss of the Position Command signal, the actuator terminal shaft goes to minimum fuel, thus offering a safety feature. With loss of power supply voltage, the L-Series controller loses torque and the force of the loading or return spring causes the center adjustment to lower. The pilot valve follows, keeping the control port uncovered. Trapped oil under the power piston escapes to drain, and the servo power piston moves down until it reaches minimum fuel position.

Fault Detection and Annunciation
The UG-25+ actuator provides complete shutdown fault monitoring. A detected shutdown condition forces the actuator to go to the minimum fuel (0 %) position. When the shutdown condition no longer exists, the UG-25+ actuator is returned to a non-shutdown state. Faults are globally set as non-latching. When the condition no longer exists, the fault is automatically cleared without any reset.

Shutdown Details

Shutdown—Voltage Sense Fail
Indicates an out-of-range signal on the input power. Could indicate input power out of range or a fault in the supply voltage sense circuitry.

This shutdown causes the Unit Healthy LED to turn off and the External Status output (Terminal 11) to open-circuit, turning off any External Status device that is connected.

Failure levels: >33 V and <6.25 V
Persistence: 650 ms

Shutdown—Temp Sense Fail
Indicates a failure of the internal on-board Temperature Sensor.

This shutdown causes the Unit Healthy LED to turn off and the External Status output (Terminal 11) to open-circuit, turning off any External Status device that is connected.

Failure levels: >150 °C and <-45 °C
Persistence: 650 ms
Hysteresis: 5 °C (<145 °C or >–40 °C to clear)

Shutdown—OverTemp
If the on-board temperature sensor reads a temperature above 125 °C, this error will be set. The Current Limiting based on temperature will effectively make the output “limp” by reducing the drive current to zero (see Current Limiting Based on Temperature section for details).
This shutdown causes the Unit Healthy LED to turn off and the External Status output (Terminal 11) to open-circuit, turning off any External Status device that is connected.

Failure levels: >125 °C
Persistence: 650 ms
Hysteresis: 5 °C (<120 °C to clear)

Shutdown—EEPROM Fail (internal fault)
EEPROM Fail indicates failure or corruption of the internal non-volatile memory. This is a hard-coded internal shutdown. If detected, the control output will go limp. A power cycle is required to clear this fault.

This shutdown causes the Unit Healthy LED to turn off and the External Status output (Terminal 11) to open-circuit, turning off any External Status device that is connected.
Chapter 5.
Troubleshooting

Introduction

This chapter presents several broad categories of application failures typically experienced in the field, possible causes, and some tests used to verify the causes. The exact failure experienced in the field is the product of the mechanical/electrical failure. Ideally, the troubleshooting chart contains information about mechanical, electrical, engine, and load failures in addition to the possible actuator failures.

The troubleshooting scenarios listed below assume that the user has a digital multimeter for testing voltages and checking continuity, and assume that the application has been engineered and tested thoroughly.

There are four parts to the troubleshooting section:
• General Troubleshooting
• Engine/Generator Troubleshooting

The actions described in this troubleshooting section are not always appropriate in every situation. Always make sure that any action taken will not result in loss of equipment, personal injury, or loss of life.

The UG-25+ actuator is not equipped with an overspeed trip function. The engine, turbine, or other type of prime mover should be equipped with an overspeed shutdown device to protect against runaway or damage to the prime mover with possible personal injury, loss of life, or property damage.

The overspeed shutdown device must be totally independent of the prime mover control system. An overtemperature or overpressure shutdown device may also be needed for safety, as appropriate.

The UG-25+ actuator is used on prime movers that typically have a high noise level. Always use appropriate hearing protection while working around the UG-25+ actuator.

General System Troubleshooting Guide

The following is a general troubleshooting guide for areas to check which may present potential difficulties. Make these checks before contacting Woodward for technical assistance.
• Is the wiring correct? Refer to wiring diagram Figure 3-2.
• Is the drive shaft rotation direction correct?
• Is the direction of the stroke correct?
• Is the direction of the failsafe shutdown correct?
• Does the output shaft move through its proper stroke smoothly?
• Does the output travel its full stroke?
• Can mid-stroke be obtained and held?
• Does the output fully seat (close)?
• Does the output fully open?
Oil

Keep the actuator oil level to the mark on the oil sight glass with the unit operating. Dirty oil causes actuator problems. Use clean, new, or filtered oil. Oil containers used must be perfectly clean. Oil contaminated with water breaks down rapidly, causing foaming, and corrodes internal actuator parts.

Preliminary Inspection

Actuator problems are usually revealed in speed variations of the prime mover, but it does not necessarily follow that such variations are caused by the actuator. When improper speed variations appear, the following procedure should be performed:

1. Check the load to be sure the speed changes are not the result of load changes beyond the capacity of the prime mover.

2. Check engine operation to be sure all cylinders are firing properly and that the fuel injectors are in good operating condition and properly calibrated.

3. Check the linkage between the actuator and fuel racks or valve. There must be no binding or lost motion.

4. Check that the actuator oil is clean and oil level is correct at operating temperature. The source of most problems in any hydraulic actuator stems from dirty oil. Grit and other impurities can be introduced into the actuator with the oil, or form when the oil begins to break down (oxidize) or becomes sludgy.

 The internal moving parts are continually lubricated by the oil within the unit. Valves, pistons, and plungers will stick and even “freeze” in their bores, due to grit and impurities in the oil.

 When in doubt, change the oil.

 If this is the case, erratic operation and poor response can be corrected (if wear is not excessive) by flushing the unit with fuel oil or kerosene.

 The use of commercial solvents is not recommended as they may damage seals or gaskets.

 To change oil, remove the drain plug and drain out the old oil. Flush the actuator by filling it with fuel oil, and with the prime mover running at low speed, cycle the actuator. Let the actuator hunt for a minute or two, then stop the engine and drain the actuator. Flush the actuator once again. Refill the actuator with oil (see Chapter 2, Oil Supply).

 Restart the engine.

5. Check that the drive to the actuator is correctly aligned and free of roughness, side loading, and excessive backlash.
Table 5-1. Engine/Generator Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Suggested Test/Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine hunts or surges</td>
<td>The problem may be originating in the actuator or prime mover.</td>
<td>Block the throttle, fuel racks, or steam valve in the direction of increase fuel (never block the actuator output shaft in the direction that would prevent a complete shutdown).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WARNING</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The UG-25+ actuator is not equipped with an overspeed trip function. The engine, turbine, or other type of prime mover should be equipped with an independent overspeed shutdown device to protect against runaway or damage to the prime mover with possible personal injury, loss of life, or property damage. That overspeed shutdown device must be totally independent of the prime mover control system. An overtemperature or overpressure shutdown device may also be needed for safety, as appropriate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If hunting and/or surging continues while the actuator output shaft is blocked, the problem is in the prime mover.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If, after removing the block, hunting and/or surging starts again, the problem can be in the actuator or in the prime mover. Go through the dynamics adjustment procedure for the prime mover control system. If the problem is still there, replace the actuator. If the hunting and/or surging continues, the problem is in the prime mover.</td>
</tr>
<tr>
<td>Oil varnish, which causes sticking of parts.</td>
<td>Return the actuator to a Woodward authorized service facility for overhaul.</td>
<td></td>
</tr>
<tr>
<td>Dirty oil (sludge) in actuator.</td>
<td>Return the actuator to a Woodward authorized service facility for overhaul.</td>
<td></td>
</tr>
<tr>
<td>Lost motion in engine linkage or fuel pumps.</td>
<td>Repair linkage and/or pumps.</td>
<td></td>
</tr>
<tr>
<td>Binding in engine-to-actuator linkage or fuel pumps.</td>
<td>Repair and realign linkage and/or pumps.</td>
<td></td>
</tr>
<tr>
<td>Actuator output shaft travel too short to provide full fuel.</td>
<td>Adjust travel until proper travel is obtained.</td>
<td></td>
</tr>
<tr>
<td>Low oil pressure.</td>
<td>Return actuator for repair.</td>
<td></td>
</tr>
<tr>
<td>Fuel linkage incorrectly set. This might occur if the actuator has been changed or removed and replaced. Relationship of actuator travel to power output of engine should be per engine manufacturer’s layout.</td>
<td>Rework or reset the linkage from actuator to unit to obtain the linear relationship.</td>
<td></td>
</tr>
<tr>
<td>Faulty linkage.</td>
<td>Linkage should be free of binding and lost motion throughout service life of unit. Check yield links, shutdown arrangements, etc, to be sure that prime mover power changes for very small increments of actuator output shaft travel. Stability and good steady-state performance will suffer unless this condition is met.</td>
<td></td>
</tr>
<tr>
<td>Incorrect non-linear relationship between actuator travel and power output of the prime mover. Engine may hunt with light loads and be stable with a heavy load.</td>
<td>Adjust linkage from actuator to gas valve to obtain linear relationship between actuator travel and engine output. See Figures 2-3 and 2-4. Also, see application note 50516.</td>
<td></td>
</tr>
<tr>
<td>Gas or steam pressure too high.</td>
<td>Adjust gas or steam pressure.</td>
<td></td>
</tr>
<tr>
<td>Engine misfiring (bad fuel injector or low pilot fuel on dual fuel engine).</td>
<td>Check pyrometer readings of each cylinder and make necessary repairs or adjustments.</td>
<td></td>
</tr>
<tr>
<td>Actuator dynamics/stability issue.</td>
<td>See control system adjustments.</td>
<td></td>
</tr>
<tr>
<td>Actuator worn.</td>
<td>Return actuator for repair.</td>
<td></td>
</tr>
<tr>
<td>Problem</td>
<td>Possible Cause</td>
<td>Suggested Test/Correction</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>---------------------------</td>
</tr>
</tbody>
</table>
| Jiggle at actuator output shaft | Rough engine drive or actuator drive. | Inspect drive mechanism.
 a. Check alignment of gears.
 b. Inspect for rough gear teeth, eccentric gears, or excessive backlash in gear train.
 c. Check gear keys and nuts or set screws holding drive gears to shafts.
 d. Check for bent drive shaft.
 e. Check serrated or spline coupling for wear and alignment.
 f. Tighten chain between crankshaft and camshaft (if used).
 g. Check engine vibration damper (if used). |
| Actuator is not aligned properly. | | Loosen actuator mounting screws and move the actuator slightly on its mounting pad to align the drive shaft with its coupling. |
| Engine does not start | Stuck throttle/frozen shaft | Move throttle by hand. Assess smoothness, friction, and return spring force. |
| Power not applied to control | | Test for (+18 to +32) V (dc) between input power pin and ground pin. |
| The actuator is not opening the fuel control valve during engine cranking. | The control has detected a shutdown situation and has not been reset. | Reset the control. |
| | There is no power supplied to the control. | Check fuse, wiring, and battery voltage. |
| | The control does not read any speed. Speed sensor defect or wiring defect. | Verify the speed signal to the control. |
| Engine unstable | Improperly tuned dynamics. | Tune the control system dynamics. |
| Unable to develop full power | Non-indexed linkage slipped on shaft. | Manually verify full travel of fuel linkage. |
| Unit Healthy LED is off | No power or voltage out of range. | Verify supply voltage. Test for (18 to 32) V (dc) between input power (+) terminal and (−) terminal. |
| | Controller fault. | Return actuator for repair. |
| Discrete output not working | Wiring fault. | Check the wiring leading to Terminal 11 for open connections or misconnections.
 Verify that Terminal 11 is not connected directly to input power or ground. |
| | Internal actuator fault. | Verify Unit Healthy Status LED functionality. Both Discrete out and LED are driven from the same controller terminal and should activate together (L-Series Terminal B on TB5-2).
 Verify on/off command signal to discrete out using Service Tool (overview tab). |
Chapter 6.
Product Support and Service Options

Product Support Options

If you are experiencing problems with the installation, or unsatisfactory performance of a Woodward product, the following options are available:

- Consult the troubleshooting guide in the manual.
- Contact the manufacturer or packager of your system.
- Contact the Woodward Full Service Distributor serving your area.
- Contact Woodward technical assistance (see “How to Contact Woodward” later in this chapter) and discuss your problem. In many cases, your problem can be resolved over the phone. If not, you can select which course of action to pursue based on the available services listed in this chapter.

OEM or Packager Support: Many Woodward controls and control devices are installed into the equipment system and programmed by an Original Equipment Manufacturer (OEM) or Equipment Packager at their factory. In some cases, the programming is password-protected by the OEM or packager, and they are the best source for product service and support. Warranty service for Woodward products shipped with an equipment system should also be handled through the OEM or Packager. Please review your equipment system documentation for details.

Woodward Business Partner Support: Woodward works with and supports a global network of independent business partners whose mission is to serve the users of Woodward controls, as described here:

- A Full Service Distributor has the primary responsibility for sales, service, system integration solutions, technical desk support, and aftermarket marketing of standard Woodward products within a specific geographic area and market segment.
- An Authorized Independent Service Facility (AISF) provides authorized service that includes repairs, repair parts, and warranty service on Woodward's behalf. Service (not new unit sales) is an AISF's primary mission.
- A Recognized Turbine Retrofitter (RTR) is an independent company that does both steam and gas turbine control retrofits and upgrades globally, and can provide the full line of Woodward systems and components for the retrofits and overhauls, long term service contracts, emergency repairs, etc.

A current list of Woodward Business Partners is available at www.woodward.com/directory.

Product Service Options

The following factory options for servicing Woodward products are available through your local Full-Service Distributor or the OEM or Packager of the equipment system, based on the standard Woodward Product and Service Warranty (5-01-1205) that is in effect at the time the product is originally shipped from Woodward or a service is performed:

- Replacement/Exchange (24-hour service)
- Flat Rate Repair
- Flat Rate Remanufacture
Replacement/Exchange: Replacement/Exchange is a premium program designed for the user who is in need of immediate service. It allows you to request and receive a like-new replacement unit in minimum time (usually within 24 hours of the request), providing a suitable unit is available at the time of the request, thereby minimizing costly downtime. This is a flat-rate program and includes the full standard Woodward product warranty (Woodward Product and Service Warranty 5-01-1205).

This option allows you to call your Full-Service Distributor in the event of an unexpected outage, or in advance of a scheduled outage, to request a replacement control unit. If the unit is available at the time of the call, it can usually be shipped out within 24 hours. You replace your field control unit with the like-new replacement and return the field unit to the Full-Service Distributor.

Charges for the Replacement/Exchange service are based on a flat rate plus shipping expenses. You are invoiced the flat rate replacement/exchange charge plus a core charge at the time the replacement unit is shipped. If the core (field unit) is returned within 60 days, a credit for the core charge will be issued.

Flat Rate Repair: Flat Rate Repair is available for the majority of standard products in the field. This program offers you repair service for your products with the advantage of knowing in advance what the cost will be. All repair work carries the standard Woodward service warranty (Woodward Product and Service Warranty 5-01-1205) on replaced parts and labor.

Flat Rate Remanufacture: Flat Rate Remanufacture is very similar to the Flat Rate Repair option with the exception that the unit will be returned to you in “like-new” condition and carry with it the full standard Woodward product warranty (Woodward Product and Service Warranty 5-01-1205). This option is applicable to mechanical products only.

Returning Equipment for Repair

If a control (or any part of an electronic control) is to be returned for repair, please contact your Full-Service Distributor in advance to obtain Return Authorization and shipping instructions.

When shipping the item(s), attach a tag with the following information:

- Return authorization number
- Name and location where the control is installed
- Name and phone number of contact person
- Complete Woodward part number(s) and serial number(s)
- Description of the problem
- Instructions describing the desired type of repair

Packing a Control

Use the following materials when returning a complete control:

- Protective caps on any connectors
- Antistatic protective bags on all electronic modules
- Packing materials that will not damage the surface of the unit
- At least 100 mm (4 inches) of tightly packed, industry-approved packing material
- A packing carton with double walls
- A strong tape around the outside of the carton for increased strength

NOTICE

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.
Replacement Parts

When ordering replacement parts for controls, include the following information:

- The part number(s) (XXXX-XXXX) that is on the enclosure nameplate
- The unit serial number, which is also on the nameplate

Engineering Services

Woodward offers various Engineering Services for our products. For these services, you can contact us by telephone, by email, or through the Woodward website.

- Technical Support
- Product Training
- Field Service

Technical Support is available from your equipment system supplier, your local Full-Service Distributor, or from many of Woodward’s worldwide locations, depending upon the product and application. This service can assist you with technical questions or problem solving during the normal business hours of the Woodward location you contact. Emergency assistance is also available during non-business hours by phoning Woodward and stating the urgency of your problem.

Product Training is available as standard classes at many of our worldwide locations. We also offer customized classes, which can be tailored to your needs and can be held at one of our locations or at your site. This training, conducted by experienced personnel, will assure that you will be able to maintain system reliability and availability.

Field Service engineering on-site support is available, depending on the product and location, from many of our worldwide locations or from one of our Full-Service Distributors. The field engineers are experienced both on Woodward products as well as on much of the non-Woodward equipment with which our products interface.

For information on these services, please contact us via telephone, email us, or use our website: www.woodward.com.

Contacting Woodward’s Support Organization

For the name of your nearest Woodward Full-Service Distributor or service facility, please consult our worldwide directory at www.woodward.com/directory, which also contains the most current product support and contact information.

You can also contact the Woodward Customer Service Department at one of the following Woodward facilities to obtain the address and phone number of the nearest facility at which you can obtain information and service.
Technical Assistance

If you need to contact technical assistance, you will need to provide the following information. Please write it down here before contacting the Engine OEM, the Packager, a Woodward Business Partner, or the Woodward factory:

<table>
<thead>
<tr>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Your Name</td>
</tr>
<tr>
<td>Site Location</td>
</tr>
<tr>
<td>Phone Number</td>
</tr>
<tr>
<td>Fax Number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prime Mover Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
</tr>
<tr>
<td>Turbine Model Number</td>
</tr>
<tr>
<td>Type of Fuel (gas, steam, etc.)</td>
</tr>
<tr>
<td>Power Output Rating</td>
</tr>
<tr>
<td>Application (power generation, marine, etc.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control/Governor Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control/Governor #1</td>
</tr>
<tr>
<td>Woodward Part Number & Rev. Letter</td>
</tr>
<tr>
<td>Control Description or Governor Type</td>
</tr>
<tr>
<td>Serial Number</td>
</tr>
</tbody>
</table>

| Control/Governor #2 |
| Woodward Part Number & Rev. Letter|
| Control Description or Governor Type |
| Serial Number |

| Control/Governor #3 |
| Woodward Part Number & Rev. Letter|
| Control Description or Governor Type |
| Serial Number |

<table>
<thead>
<tr>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>

If you have an electronic or programmable control, please have the adjustment setting positions or the menu settings written down and with you at the time of the call.
Appendix A.
Acronyms / Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCW</td>
<td>Counterclockwise</td>
</tr>
<tr>
<td>CW</td>
<td>Clockwise</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-Mode Rejection Ratio</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic Redundancy Count</td>
</tr>
<tr>
<td>EMC</td>
<td>Electro-Magnetic Compatibility</td>
</tr>
<tr>
<td>I/O</td>
<td>Inputs/Outputs</td>
</tr>
<tr>
<td>L-Series</td>
<td>Woodward electronic engine governor that contains both a rotary governor and a controller circuit board</td>
</tr>
<tr>
<td>O.D.</td>
<td>Outside Diameter</td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturer</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional/Integral/Derivative</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts Per Million</td>
</tr>
<tr>
<td>TPS</td>
<td>Travel Position Sensor</td>
</tr>
</tbody>
</table>
Appendix B.
UG-25+ Governor Specifications

<table>
<thead>
<tr>
<th>Actuator</th>
<th>Power Supply:</th>
<th>18 to 32 Vdc, dual inputs at 2.5 A max, each</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Power Consumption:</td>
<td>Reverse polarity protection, 32 W max</td>
</tr>
<tr>
<td>Torque/Work Output (minimum): Standard Version (0.625 inch diameter terminal shaft)</td>
<td></td>
<td>45.4 N-m (33.5 lb-ft) torque; 32.9 J (24.3 ft-lb) of work over 42 degrees</td>
</tr>
<tr>
<td>Increased Output Version (0.75 inch diameter terminal shaft)</td>
<td></td>
<td>55.5 N-m (40.9 lb-ft) torque; 40.2 J (29.6 ft-lb) of work over 42 degrees</td>
</tr>
<tr>
<td>Continuous Speed:</td>
<td></td>
<td>500 rpm to 1700 rpm (governor shaft speed) max (0.625 in pump); 350 rpm to 1200 rpm (governor shaft speed) max (0.875 in pump)</td>
</tr>
<tr>
<td>Hysteresis:</td>
<td></td>
<td>1.0 % or less (measured over full terminal shaft travel)</td>
</tr>
<tr>
<td>Temperature Drift:</td>
<td></td>
<td>1.0 % of full terminal shaft travel between 27 °C and 77 °C (80 °F and 170 °F)</td>
</tr>
<tr>
<td>Linearity:</td>
<td></td>
<td>2.5 % or less (measured over full terminal shaft travel)</td>
</tr>
<tr>
<td>Slew Rate:</td>
<td></td>
<td>180 degrees/second or better at full actuator oil pressure for 34 J (25 ft-lb) of work output; 145 degrees/second or better at full actuator oil pressure for 41 J (31 ft-lb) of work output</td>
</tr>
<tr>
<td>Note:</td>
<td></td>
<td>All performance specifications are valid while operating at a case temperature between 71 °C and 93 °C (160 °F to 200 °F) with an oil viscosity of 20 cSt to 65 cSt (100 to 300 SUS).</td>
</tr>
<tr>
<td>Weight:</td>
<td></td>
<td>27 kg (60 lb), dry weight</td>
</tr>
<tr>
<td>Customer Connections:</td>
<td></td>
<td>Terminal blocks located inside front access plate (field wiring enters the top of the unit through a cable gland available commercially or from Woodward)</td>
</tr>
</tbody>
</table>

Actuator Drive / Hydraulic System

<table>
<thead>
<tr>
<th>Input Shaft Options:</th>
<th>0.625 keyed drive shaft with 0.625-18 threads or 0.625-36 serrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output:</td>
<td>42.2 ± 0.6 degrees rotary</td>
</tr>
<tr>
<td>Terminal Shaft Options:</td>
<td>0.625-36 serration (34 J / 25 ft-lb version); 0.750-48 serration (41 J / 31 ft-lb version)</td>
</tr>
<tr>
<td>Drive Power Requirement:</td>
<td>335 W (0.45 hp) max</td>
</tr>
<tr>
<td>Internal Hydraulic Pressure:</td>
<td>1034 kPa (150 psi)</td>
</tr>
<tr>
<td>Oil:</td>
<td>Self-contained sump (2.2 qt/2.1 L capacity). See Woodward Manual 25071, Oils for Hydraulic Controls, for oil recommendations.</td>
</tr>
<tr>
<td>Drive Rotation:</td>
<td>Pump can be configured to operate in CW or CCW direction</td>
</tr>
</tbody>
</table>

Environment

Ambient Operating Temperature:	0 to +55 °C (32 to +131 °F)
Governor Case Temperature:	100 °C (212 °F) maximum
Storage Temperature:	−40 to +85 °C (−40 to +185 °F), limited by electronics
Humidity:	US MIL-STD 810E, Method 507.3, Procedure III
Shock: MS1-40G 11 ms sawtooth

Vibration Validation: Power Spectral Density (PSD) must not exceed the level or frequency as shown in the curve while the governor is running on a loaded engine, as measured at governor base.

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Allowed PSD Level (G²/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.00240</td>
</tr>
<tr>
<td>40</td>
<td>0.00414</td>
</tr>
<tr>
<td>80</td>
<td>0.00736</td>
</tr>
<tr>
<td>220</td>
<td>0.00736</td>
</tr>
<tr>
<td>540</td>
<td>0.03197</td>
</tr>
<tr>
<td>700</td>
<td>0.03197</td>
</tr>
<tr>
<td>860</td>
<td>0.05453</td>
</tr>
<tr>
<td>1340</td>
<td>0.07452</td>
</tr>
<tr>
<td>1480</td>
<td>0.05339</td>
</tr>
<tr>
<td>1960</td>
<td>0.01595</td>
</tr>
</tbody>
</table>

Thermal Shock: SAE J1455, Paragraph 4.1.3.2

Ingress Protection: IP45 for Entire Unit, IP56 for User Interface per EN60529 and only if proper cable glands are used as described in this manual.

Functions

I/O: 4–20 mA analog speed setting; Position Command control signal
 Unit Healthy discrete out

Front Panel Indications: Unit Healthy status indication
I/O Specifications

Table B-1. Power Input (1 and 2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>(18 to 32) V (dc)</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>Nominal consumption is less than 500 mA. If internal failures occur, the device can draw 32 W maximum. (18 V @ 1.8 A)</td>
</tr>
<tr>
<td>Protection</td>
<td>Reverse-polarity protected</td>
</tr>
<tr>
<td>Isolation</td>
<td>None</td>
</tr>
</tbody>
</table>

Table B-2. Status (Unit Health) Output

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Type</td>
<td>Low-side output driver</td>
</tr>
<tr>
<td>Max Contact Voltage (Open)</td>
<td>32 V</td>
</tr>
<tr>
<td>Max Current</td>
<td>0.5 A</td>
</tr>
<tr>
<td>Max Contact Voltage at 0.5 A</td>
<td>1.5 V</td>
</tr>
<tr>
<td>(Closed)</td>
<td></td>
</tr>
<tr>
<td>Max Delay Time for Opening Contact</td>
<td>6.5 ms</td>
</tr>
<tr>
<td>Default at Power Up</td>
<td>On (conducting), if there are no faults</td>
</tr>
<tr>
<td>During Error Condition</td>
<td>Off</td>
</tr>
<tr>
<td>Driving Inductive Loads</td>
<td>Yes, internally protected low-side switch</td>
</tr>
<tr>
<td>Protection</td>
<td>Utilizes circuitry that will open the contact when output contacts are short-circuited. Self-resetting when fault is removed</td>
</tr>
</tbody>
</table>

Table B-3. Position Command

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Type</td>
<td>(4 to 20) mA</td>
</tr>
<tr>
<td>Input Scaling</td>
<td>4 mA is minimum position signal</td>
</tr>
<tr>
<td></td>
<td>20 mA is maximum position signal</td>
</tr>
<tr>
<td>Max Input (Full Scale)</td>
<td>0 mA to 25 mA</td>
</tr>
<tr>
<td>Input type</td>
<td>Differential</td>
</tr>
<tr>
<td>3 db Circuit Bandwidth</td>
<td>30 Hz</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>200 Ω</td>
</tr>
<tr>
<td>Anti-Aliasing Filter</td>
<td>1 anti-aliasing pole at 0.47 ms (338 Hz)</td>
</tr>
<tr>
<td>Resolution</td>
<td>10 bits</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±0.8 % of full scale at 25 °C</td>
</tr>
<tr>
<td>Drift</td>
<td>80 ppm/°C</td>
</tr>
<tr>
<td>I/O Latency</td>
<td>6.5 ms</td>
</tr>
<tr>
<td>CMRR</td>
<td>60 dB</td>
</tr>
<tr>
<td>Common-Mode Range</td>
<td>45 V (dc)</td>
</tr>
</tbody>
</table>
Revision History

Changes in Revision D—
• Updated Regulatory Compliance directives
• Updated Recommended Service Intervals (Chapter 2)
• Revised Boost Fuel Limit Function and Figure 4-9 (Chapter 4)
• Updated Start Fuel 2 description (Chapter 6)
• Added new Declaration of Conformity and Declaration of Incorporation

Changes in Revision C—
• Clarified O-Ring source (page 11)
• Explained lifting method for governor installation (page 11)

Changes in Revision B—
• Updated Regulatory Compliance information
• Added fire protection warning (page 7)
• Removed Hazardous Location & UL information (pages 16/17/18/23/37)
• Added Declarations

Changes in Revision A—
• Figure 1-1—Updated call-outs
• Figure 1-2—Updated dimension lines
DECLARATION OF CONFORMITY

EU DoC No.: 00332-04-EU-02-01
Manufacturer’s Name: Woodward, INC.
Manufacturer’s Contact Address: Building A, Ditiaitai Industrial Park, Huahedao, Beichen High-Tech Industrial Park, Tianjin, China
Model Name(s)/Number(s): UG25+ Governor/UG25+ Actuator

The object of the declaration described above is in conformity with the following relevant Union harmonization legislation:

Applicable Standards:
- EN61000-6-2, 2005: EMC Part 6-2: Generic Standards - Immunity for Industrial Environments

This declaration of conformity is issued under the sole responsibility of the manufacturer.

We, the undersigned, hereby declare that the equipment specified above conforms to the above Directive(s).

MANUFACTURER

Signature

Christopher Perkins
Full Name

Engineering Manager
Position

Woodward, Fort Collins, CO, USA
Place

09 - Aug - 2016
Date
DECLARATION OF INCORPORATION
Of Partly Completed Machinery
2006/42/EC

Manufacturer's Name: WOODWARD, INC
Manufacturer's Address: Building A, Ditianzai Industrial Park, Huaihedao, Beichen High-Tech Industrial Park, Tianjin, China
Model Names: UG25+ Governor/UG25+ Actuator/UG25+

This product complies, where applicable, with the following
Essential Requirements of Annex I: 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7

The relevant technical documentation is compiled in accordance with part B of Annex VII. Woodward shall transmit relevant information if required by a reasoned request by the national authorities. The method of transmittal shall be agreed upon by the applicable parties.

The person authorized to compile the technical documentation:

Name: Ralf Friedrich, Group Director, Quality, EPS
Address: Woodward GmbH, Handwerkstraße 29, 70565 Stuttgart, Germany

This product must not be put into service until the final machinery into which it is to be incorporated has been declared in conformity with the provisions of this Directive, where appropriate.

The undersigned hereby declares, on behalf of Woodward Governor Company of Loveland and Fort Collins, Colorado that the above referenced product is in conformity with Directive 2006/42/EC as partly completed machinery:

MANUFACTURER

Signature: [Signature]
Full Name: Suhail Horan
Position: Quality Manager
Place: Fort Collins, CO, USA
Date: 24-May-2012
THIS PAGE INTENTIONALLY LEFT BLANK