Instructions for replacement of the TQ-125™ Engine Control with an L-Series 8404-1004 Speed Controller
Read this entire manual and all other publications pertaining to the work to be performed before installing, operating, or servicing this equipment. Practice all plant and safety instructions and precautions. Failure to follow instructions can cause personal injury and/or property damage.

This publication may have been revised or updated since this copy was produced. To verify that you have the latest revision, check manual 26311, Revision Status & Distribution Restrictions of Woodward Technical Publications, on the publications page of the Woodward website: www.woodward.com/publications

The latest version of most publications is available on the publications page. If your publication is not there, please contact your customer service representative to get the latest copy.

Any unauthorized modifications to or use of this equipment outside its specified mechanical, electrical, or other operating limits may cause personal injury and/or property damage, including damage to the equipment. Any such unauthorized modifications: (i) constitute "misuse" and/or "negligence" within the meaning of the product warranty thereby excluding warranty coverage for any resulting damage, and (ii) invalidate product certifications or listings.

If the cover of this publication states "Translation of the Original Instructions" please note:

The original source of this publication may have been updated since this translation was made. Be sure to check manual 26311, Revision Status & Distribution Restrictions of Woodward Technical Publications, to verify whether this translation is up to date. Out-of-date translations are marked with . Always compare with the original for technical specifications and for proper and safe installation and operation procedures.

Revisions—Changes in this publication since the last revision are indicated by a black line alongside the text.

Woodward reserves the right to update any portion of this publication at any time. Information provided by Woodward is believed to be correct and reliable. However, no responsibility is assumed by Woodward unless otherwise expressly undertaken.

Copyright © Woodward 2005
All Rights Reserved
Important Definitions

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

- **DANGER**—Indicates a hazardous situation which, if not avoided, will result in death or serious injury.
- **WARNING**—Indicates a hazardous situation which, if not avoided, could result in death or serious injury.
- **CAUTION**—Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.
- **NOTICE**—Indicates a hazard that could result in property damage only (including damage to the control).
- **IMPORTANT**—Designates an operating tip or maintenance suggestion.

WARNING

Overspeed / Overtemperature / Overpressure

The engine, turbine, or other type of prime mover should be equipped with an overspeed shutdown device to protect against runaway or damage to the prime mover with possible personal injury, loss of life, or property damage.

The overspeed shutdown device must be totally independent of the prime mover control system. An overtemperature or overpressure shutdown device may also be needed for safety, as appropriate.

WARNING

Personal Protective Equipment

The products described in this publication may present risks that could lead to personal injury, loss of life, or property damage. Always wear the appropriate personal protective equipment (PPE) for the job at hand. Equipment that should be considered includes but is not limited to:

- Eye Protection
- Hearing Protection
- Hard Hat
- Gloves
- Safety Boots
- Respirator

Always read the proper Material Safety Data Sheet (MSDS) for any working fluid(s) and comply with recommended safety equipment.

WARNING

Start-up

Be prepared to make an emergency shutdown when starting the engine, turbine, or other type of prime mover, to protect against runaway or overspeed with possible personal injury, loss of life, or property damage.

WARNING

Automotive Applications

On- and off-highway Mobile Applications: Unless Woodward’s control functions as the supervisory control, customer should install a system totally independent of the prime mover control system that monitors for supervisory control of engine (and takes appropriate action if supervisory control is lost) to protect against loss of engine control with possible personal injury, loss of life, or property damage.
To prevent damage to a control system that uses an alternator or battery-charging device, make sure the charging device is turned off before disconnecting the battery from the system.

Electrostatic Discharge Awareness

Electronic controls contain static-sensitive parts. Observe the following precautions to prevent damage to these parts:

- Discharge body static before handling the control (with power to the control turned off, contact a grounded surface and maintain contact while handling the control).
- Avoid all plastic, vinyl, and Styrofoam (except antistatic versions) around printed circuit boards.
- Do not touch the components or conductors on a printed circuit board with your hands or with conductive devices.

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.

Follow these precautions when working with or near the control.

1. Avoid the build-up of static electricity on your body by not wearing clothing made of synthetic materials. Wear cotton or cotton-blend materials as much as possible because these do not store static electric charges as much as synthetics.

2. Do not remove the printed circuit board (PCB) from the control cabinet unless absolutely necessary. If you must remove the PCB from the control cabinet, follow these precautions:
 - Do not touch any part of the PCB except the edges.
 - Do not touch the electrical conductors, the connectors, or the components with conductive devices or with your hands.
 - When replacing a PCB, keep the new PCB in the plastic antistatic protective bag it comes in until you are ready to install it. Immediately after removing the old PCB from the control cabinet, place it in the antistatic protective bag.
Instructions for replacement of the TQ-125™ Engine Control with an L-Series 8404-1004 Speed Controller

Introduction
Woodward's L-Series Speed Control can be used as a functional replacement for the TQ-125™ Speed Control. The L-Series 8404-1004 speed control was designed with many new features and functions that are not built into the TQ-125.

The Woodward L-Series combines the L-Series electric actuator with integrated speed control software to control the speed of a diesel or gaseous engine. The L-Series is a microprocessor-based control that is incorporated into the actuator, creating a single integrated package. This eliminates the need for an additional driver box and speed control box.

Refer to Woodward manual 26250 for details on the L-Series additional features, operation, adjustment, and troubleshooting.

Required Items to Complete Replacement

<table>
<thead>
<tr>
<th>Installation Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>8923-1163 (Includes the following):</td>
</tr>
<tr>
<td>8404-1004 L-Series Speed Control</td>
</tr>
<tr>
<td>3600-1274 Adapter Plate and Mounting Hardware</td>
</tr>
<tr>
<td>02-0004-171 Lever for .25-inch Shaft</td>
</tr>
<tr>
<td>5404-1049 Electrical Harness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programming Harness</th>
</tr>
</thead>
<tbody>
<tr>
<td>8923-1061 (Used for configuring and tuning the L-Series)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9-Pin Straight-through Serial Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>(not provided)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L-Series Service Tool Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>9927-1222 (free download from www.woodward.com)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L-Series Speed Control Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>26250 (free download from www.woodward.com)</td>
</tr>
</tbody>
</table>

Overview
The following pages will describe the TQ-125 replacement in detail. The general replacement will require the removal of the TQ-125 control and lever arm but not the linkage. The L-Series control will be mounted on an adapter plate which is designed to mount to the same bracket that held the TQ-125. A new lever arm is installed to the L-Series assembly and connected to the linkage. The L-Series electrical harness is installed using the existing wiring for the TQ-125.
Using the programming harness and a laptop computer, configure the control for the proper speed signal (number of teeth when using an MPU or number of cylinders when using ignition), speed setpoints (including the overspeed setpoint), and any necessary options such as second dynamics. The default PID speed dynamics should be sufficient for the initial start-up. Once the engine is running, you can use the service tool software to adjust the speed dynamics for best performance in your application.

Mechanical Installation

Do not expose the control to sources of radiant heat such as exhaust manifolds or turbochargers. The L-Series control is designed to operate within an ambient temperature range of –40 to +105 °C (–40 to +221 °F). In spark-ignited applications, make sure the L-Series control is located away from the ignition coil, and that harness wires are not routed next to the spark plug wires.

1. The TQ-125 control should be rigidly mounted to the engine with a bracket. At the minimum fuel position, remove the linkage from the TQ-125 by loosening the lever-retaining bolt. Remove the four 0.250-28 screws which attach the TQ-125 to the bracket and remove the control.

2. Mount the L-series control (8404-1004) to the adapter plate (3600-1274) using the four M5 mounting screws contained in the installation kit. While it is not a requirement, it is good practice to orient the connector feature on the control in a horizontal or downward orientation to minimize fluid accumulation between the enclosure and the mating connector’s gasket.

3. Install the L-Series and adapter plate assembly onto the TQ-125 mounting bracket using the four 0.250-28 screws.

4. The linkage for diesel engine applications should be linear, and for carbureted engines non-linear. The linkage should not bind or have play in it.

5. Install the new L-Series lever (02-0004-171) included in the installation kit to the shaft of the L-Series and re-connect the linkage.
6. Once installed, manually stroke the fuel-control linkage from stop to stop as if the actuator were moving it. The linkage must move freely, without friction and backlash. Lubricate or replace worn linkage or fuel control parts as required. Always make sure the fuel delivery device (fuel pump or throttle body) has a return spring that pulls toward minimum fuel when no power is applied to the control. Size the return spring so that the actuator output shaft sees no more than 0.07 N-m (0.05 lb-ft) of torque at maximum loading conditions.
Electrical Installation

Figure 4 shows a wiring pinout of the L-Series control, as viewed by looking into the control’s connector. The control system should be protected with a 6 A fuse in the voltage supply lines. Typical max average current is 2.1 A, or max 25 W at 12 V. The application should be configured to turn on power to the actuator when the engine is first cranked. The use of cable with individually shielded-twisted pairs should be used with the speed signal input.

1. Using the harness provided in the installation kit (8923-1163), replace the TQ-125 connector by wiring in the L-Series connector into the TQ-125 portion of the engine harness as shown in the diagrams.

Figure 4. Wiring Pinout (TQ 8405-213, 215, 216, 223)
If replacing a TQ-125 8405-214 using an ignition input from the coil (–) for a speed signal, it will be necessary to relocate the orange wire from PIN 11 on the L-Series connector, to PIN 12 as shown below.

Figure 5. Wiring Pinout (TQ 8405-214)
Figure 6. Wiring Pinout (TQ 8405-206, 207, 208, 212)

IMPORTANT
If using an ignition input for the speed signal input, relocate the ORANGE wire from PIN 11 (MPU) to PIN 12 (IGN).
Configuring the L-Series

You must configure the L-Series using the Software Service Tool. Parameters such as Speed Input, Rated Setpoint, and Overspeed Threshold will need to be configured before starting the engine. Refer to L-series Speed Control Manual 26250 for a complete description of all L-Series features and programming examples.

Figure 7. Connecting the Control

Figure 8. Example Service Tool Screen
Position Calibration and Verification

Position calibration is normally used when full travel of the actuator is constrained or limited such that 0 to 60 degrees of travel is not used. **When replacing a TQ-125 with an L-Series, the linkage travel is usually less than 60 degrees, and a position calibration must be performed for proper operation.** The Service Tool is used to calibrate the control to end user (linkage) stops and to verify the position calibration. The L-Series will be driven from min position to max position, and the values will be saved. Refer to L-series Speed Control manual 26250 for complete description of calibration and position verification.

1. Verify the L-Series is at minimum position when the throttle or fuel rack is at minimum position. If unsure, simply loosen the L-Series lever and rotate the L-Series shaft to full minimum position and re-tighten the lever.

2. Using the L-Series Service Tool, select the Automatic Position Calibration from the Tools option at the top of the screen.

Example of Calibration Menu

3. After reading the warning message, select the checkbox and then click the Next button using your mouse.
4. The minimum position and the failed direction are listed here and graphically shown from the shaft end of the L-Series. If this is not correct, use the pulldown arrow to change the direction of rotation and the failed direction to the correct orientation for your installation.

5. The blue programming arrow will rotate during calibration and the L-Series will move from minimum to maximum position.
6. When complete, the following screen will appear. You must cycle power in order to save the new min/max stop positions. Select the Finish button and immediately remove power from the L-Series for approximately 5 seconds, then re-apply power. The Service Tool will re-connect. Now verify the position using the same Tools menu option.

![Position Calibration]

- Warning
- Actuator Direction
- Auto Calibration

7. From the Tools option, select Position Calibration and then Verify Position. Once again, after reading the warning message, select the checkbox and then click the Next button using your mouse.
8. Select the checkbox to enable manual position tuning. Note the minimum and maximum positions at the bottom of the screen—these are the saved minimum and maximum positions from your calibration. **For best results, you should have a minimum 30 degrees of travel**—anything less than 30 degrees may cause instability or difficulty in tuning the dynamic settings due to excessive gain in the mechanical linkage. If you do not have 30 degrees of travel from minimum to maximum position, re-adjust your linkage to obtain additional travel and repeat the calibration procedure (steps 1–8).

9. With the checkbox enabled, enter a value for requested position of 50% and press the “Enter” key on your PC. Do not select the Finish button until you are ready to exit. A requested position of 50% is 50% of full travel. If your full travel is 30 degrees, 50% will be 15 degrees or 50% of full travel. If the L-series does not move in the desired direction, repeat the calibration procedure and correct the direction of rotation. If the normal movement is verified, select the Finish button to exit. You can now proceed with normal start-up and dynamic configuration.

The following page gives an example of the Control Tab configuration settings of the L-Series. We recommend that you check this example and compare the settings of your control before starting.
Configuration File Control Tab Settings

Engine Starting Settings

- **Start Fuel**: One or Two with ramp
- **Start Speed 1 Threshold**: 40 rpm
- **Start Speed Hysteresis**: 18 rpm
- **Start Fuel 1**: 45.8%
- **Max Starting Time**: 20.2 sec
- **Run Speed Threshold**: 328 rpm

Engine Stopping Settings

- **Stop Speed Threshold**: 224 rpm
- **Stopped State Holding Current**: 9.8%
- **Stopped State Delay**: 0.0 sec

Error Detection

- **Governing Error Low Range**: 30 rpm
- **Governing Error Low Time**: 10.1 sec
- **Governing Error High Range**: 20 rpm
- **Governing Error High Time**: 10.1 sec
- **Overspeed Threshold**: 2000 rpm

Values are constrained by each other in increments of 8 in the following order: Start Speed Hysteresis, Start Speed 1, Stop Speed, Run Speed

- **RPM where engine cranking is detected. “Crank RPM”**
- **Percent of output (valve position) when crank RPM is detected.**
- **RPM where Speed control takes over. (Not Rated Speed!) Should be above 500 RPM for gaseous engines.**
- **Verify Overspeed setpoint**
We appreciate your comments about the content of our publications.
Send comments to: icinfo@woodward.com
Please reference publication 51272B.

Woodward has company-owned plants, subsidiaries, and branches, as well as authorized distributors and other authorized service and sales facilities throughout the world.

Complete address / phone / fax / email information for all locations is available on our website.